Internal
problem
ID
[10339]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
332
Date
solved
:
Wednesday, March 05, 2025 at 10:21:15 AM
CAS
classification
:
[[_homogeneous, `class G`]]
ode:=((x*y(x))^(1/2)-1)*x*diff(y(x),x)-((x*y(x))^(1/2)+1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-(y[x]*(1 + Sqrt[x*y[x]])) + x*(-1 + Sqrt[x*y[x]])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(sqrt(x*y(x)) - 1)*Derivative(y(x), x) - (sqrt(x*y(x)) + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)