60.1.328 problem 335

Internal problem ID [10342]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 335
Date solved : Wednesday, March 05, 2025 at 10:22:21 AM
CAS classification : [_separable]

\begin{align*} \sqrt {y^{2}-1}\, y^{\prime }-\sqrt {x^{2}-1}&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 50
ode:=(-1+y(x)^2)^(1/2)*diff(y(x),x)-(x^2-1)^(1/2) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ c_{1} +x \sqrt {x^{2}-1}-\ln \left (x +\sqrt {x^{2}-1}\right )-y \sqrt {y^{2}-1}+\ln \left (y+\sqrt {y^{2}-1}\right ) = 0 \]
Mathematica. Time used: 0.64 (sec). Leaf size: 75
ode=-Sqrt[-1 + x^2] + Sqrt[-1 + y[x]^2]*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \text {InverseFunction}\left [\frac {1}{2} \text {$\#$1} \sqrt {\text {$\#$1}^2-1}-\frac {1}{2} \log \left (\sqrt {\text {$\#$1}^2-1}+\text {$\#$1}\right )\&\right ]\left [-\frac {1}{2} \text {arctanh}\left (\frac {x}{\sqrt {x^2-1}}\right )+\frac {1}{2} \sqrt {x^2-1} x+c_1\right ] \]
Sympy. Time used: 1.406 (sec). Leaf size: 58
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-sqrt(x**2 - 1) + sqrt(y(x)**2 - 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ - \frac {x \sqrt {x^{2} - 1}}{2} + \frac {\sqrt {y^{2}{\left (x \right )} - 1} y{\left (x \right )}}{2} + \frac {\log {\left (x + \sqrt {x^{2} - 1} \right )}}{2} - \frac {\log {\left (\sqrt {y^{2}{\left (x \right )} - 1} + y{\left (x \right )} \right )}}{2} = C_{1} \]