Internal
problem
ID
[10352]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
345
Date
solved
:
Wednesday, March 05, 2025 at 10:32:48 AM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]
ode:=x*(2*x^2*y(x)*ln(y(x))+1)*diff(y(x),x)-2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-2*y[x] + x*(1 + 2*x^2*Log[y[x]]*y[x])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(2*x**2*y(x)*log(y(x)) + 1)*Derivative(y(x), x) - 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)