60.2.155 problem 731

Internal problem ID [10742]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 731
Date solved : Monday, January 27, 2025 at 09:37:05 PM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]

\begin{align*} y^{\prime }&=\frac {1+2 y}{x \left (-2+x y^{2}+2 x y^{3}\right )} \end{align*}

Solution by Maple

Time used: 0.010 (sec). Leaf size: 46

dsolve(diff(y(x),x) = 1/x*(1+2*y(x))/(-2+x*y(x)^2+2*x*y(x)^3),y(x), singsol=all)
 
\begin{align*} y &= -{\frac {1}{2}} \\ y &= \frac {{\mathrm e}^{\operatorname {RootOf}\left ({\mathrm e}^{3 \textit {\_Z}} x -4 x \,{\mathrm e}^{2 \textit {\_Z}}+8 c_{1} x \,{\mathrm e}^{\textit {\_Z}}+2 \textit {\_Z} x \,{\mathrm e}^{\textit {\_Z}}+3 x \,{\mathrm e}^{\textit {\_Z}}+16\right )}}{2}-\frac {1}{2} \\ \end{align*}

Solution by Mathematica

Time used: 0.171 (sec). Leaf size: 52

DSolve[D[y[x],x] == (1 + 2*y[x])/(x*(-2 + x*y[x]^2 + 2*x*y[x]^3)),y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\int _1^{y(x)}\left (-\frac {K[1]}{8}-\frac {1}{16 (2 K[1]+1)}+\frac {1}{16}\right )dK[1]-\frac {1}{4 x (2 y(x)+1)}=c_1,y(x)\right ] \]