60.2.166 problem 742

Internal problem ID [10753]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 742
Date solved : Tuesday, January 28, 2025 at 05:10:42 PM
CAS classification : unknown

\begin{align*} y^{\prime }&=-\frac {\cos \left (y\right ) \left (x -\cos \left (y\right )+1\right )}{\left (x \sin \left (y\right )-1\right ) \left (1+x \right )} \end{align*}

Solution by Maple

Time used: 0.743 (sec). Leaf size: 239

dsolve(diff(y(x),x) = -cos(y(x))/(x*sin(y(x))-1)*(x-cos(y(x))+1)/(x+1),y(x), singsol=all)
 
\begin{align*} y &= \arctan \left (\frac {\left (-\ln \left (x +1\right )+c_{1} \right ) \sqrt {\ln \left (x +1\right )^{2}-2 c_{1} \ln \left (x +1\right )+c_{1}^{2}-x^{2}+1}+x}{c_{1}^{2}-2 c_{1} \ln \left (x +1\right )+\ln \left (x +1\right )^{2}+1}, \frac {\ln \left (x +1\right ) x -c_{1} x +\sqrt {\ln \left (x +1\right )^{2}-2 c_{1} \ln \left (x +1\right )+c_{1}^{2}-x^{2}+1}}{c_{1}^{2}-2 c_{1} \ln \left (x +1\right )+\ln \left (x +1\right )^{2}+1}\right ) \\ y &= \arctan \left (\frac {\left (\ln \left (x +1\right )-c_{1} \right ) \sqrt {\ln \left (x +1\right )^{2}-2 c_{1} \ln \left (x +1\right )+c_{1}^{2}-x^{2}+1}+x}{c_{1}^{2}-2 c_{1} \ln \left (x +1\right )+\ln \left (x +1\right )^{2}+1}, \frac {\ln \left (x +1\right ) x -c_{1} x -\sqrt {\ln \left (x +1\right )^{2}-2 c_{1} \ln \left (x +1\right )+c_{1}^{2}-x^{2}+1}}{c_{1}^{2}-2 c_{1} \ln \left (x +1\right )+\ln \left (x +1\right )^{2}+1}\right ) \\ \end{align*}

Solution by Mathematica

Time used: 61.801 (sec). Leaf size: 221

DSolve[D[y[x],x] == -(((1 + x - Cos[y[x]])*Cos[y[x]])/((1 + x)*(-1 + x*Sin[y[x]]))),y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\sec ^{-1}\left (\frac {-\sqrt {-x^2+\log ^2(x+1)+2 c_1 \log (x+1)+1+c_1{}^2}+x \log (x+1)+c_1 x}{x^2-1}\right ) \\ y(x)\to \sec ^{-1}\left (\frac {-\sqrt {-x^2+\log ^2(x+1)+2 c_1 \log (x+1)+1+c_1{}^2}+x \log (x+1)+c_1 x}{x^2-1}\right ) \\ y(x)\to -\sec ^{-1}\left (\frac {\sqrt {-x^2+\log ^2(x+1)+2 c_1 \log (x+1)+1+c_1{}^2}+x \log (x+1)+c_1 x}{x^2-1}\right ) \\ y(x)\to \sec ^{-1}\left (\frac {\sqrt {-x^2+\log ^2(x+1)+2 c_1 \log (x+1)+1+c_1{}^2}+x \log (x+1)+c_1 x}{x^2-1}\right ) \\ \end{align*}