Internal
problem
ID
[10759]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
748
Date
solved
:
Monday, January 27, 2025 at 09:41:26 PM
CAS
classification
:
[_rational]
\begin{align*} y^{\prime }&=\frac {y \left (x +y\right )}{x \left (x +y^{3}\right )} \end{align*}
Time used: 0.007 (sec). Leaf size: 312
\begin{align*}
y &= \frac {\left (27 x +3 \sqrt {-24 c_{1}^{3}-72 \ln \left (x \right ) c_{1}^{2}-72 c_{1} \ln \left (x \right )^{2}-24 \ln \left (x \right )^{3}+81 x^{2}}\right )^{{2}/{3}}+6 \ln \left (x \right )+6 c_{1}}{3 \left (27 x +3 \sqrt {-24 c_{1}^{3}-72 \ln \left (x \right ) c_{1}^{2}-72 c_{1} \ln \left (x \right )^{2}-24 \ln \left (x \right )^{3}+81 x^{2}}\right )^{{1}/{3}}} \\
y &= \frac {\frac {\left (-i \sqrt {3}-1\right ) \left (27 x +3 \sqrt {-24 c_{1}^{3}-72 \ln \left (x \right ) c_{1}^{2}-72 c_{1} \ln \left (x \right )^{2}-24 \ln \left (x \right )^{3}+81 x^{2}}\right )^{{2}/{3}}}{6}+\left (i \sqrt {3}-1\right ) \left (\ln \left (x \right )+c_{1} \right )}{\left (27 x +3 \sqrt {-24 c_{1}^{3}-72 \ln \left (x \right ) c_{1}^{2}-72 c_{1} \ln \left (x \right )^{2}-24 \ln \left (x \right )^{3}+81 x^{2}}\right )^{{1}/{3}}} \\
y &= \frac {\frac {\left (i \sqrt {3}-1\right ) \left (27 x +3 \sqrt {-24 c_{1}^{3}-72 \ln \left (x \right ) c_{1}^{2}-72 c_{1} \ln \left (x \right )^{2}-24 \ln \left (x \right )^{3}+81 x^{2}}\right )^{{2}/{3}}}{6}+\left (-i \sqrt {3}-1\right ) \left (\ln \left (x \right )+c_{1} \right )}{\left (27 x +3 \sqrt {-24 c_{1}^{3}-72 \ln \left (x \right ) c_{1}^{2}-72 c_{1} \ln \left (x \right )^{2}-24 \ln \left (x \right )^{3}+81 x^{2}}\right )^{{1}/{3}}} \\
\end{align*}
Time used: 9.632 (sec). Leaf size: 300
\begin{align*}
y(x)\to \frac {2 \sqrt [3]{2} (\log (x)+1+c_1)}{\sqrt [3]{54 x+\sqrt {2916 x^2-864 (\log (x)+1+c_1){}^3}}}+\frac {\sqrt [3]{9 x+\frac {1}{6} \sqrt {2916 x^2-864 (\log (x)+1+c_1){}^3}}}{3^{2/3}} \\
y(x)\to \frac {\left (-1+i \sqrt {3}\right ) \sqrt [3]{54 x+\sqrt {2916 x^2-864 (\log (x)+1+c_1){}^3}}}{6 \sqrt [3]{2}}-\frac {\sqrt [3]{2} \left (1+i \sqrt {3}\right ) (\log (x)+1+c_1)}{\sqrt [3]{54 x+\sqrt {2916 x^2-864 (\log (x)+1+c_1){}^3}}} \\
y(x)\to -\frac {\sqrt [3]{2} \left (1-i \sqrt {3}\right ) (\log (x)+1+c_1)}{\sqrt [3]{54 x+\sqrt {2916 x^2-864 (\log (x)+1+c_1){}^3}}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{54 x+\sqrt {2916 x^2-864 (\log (x)+1+c_1){}^3}}}{6 \sqrt [3]{2}} \\
y(x)\to 0 \\
\end{align*}