Internal
problem
ID
[10766]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
755
Date
solved
:
Monday, January 27, 2025 at 09:43:05 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational]
\begin{align*} y^{\prime }&=\frac {y^{{3}/{2}}}{y^{{3}/{2}}+x^{2}-2 y x +y^{2}} \end{align*}
Time used: 0.061 (sec). Leaf size: 71
\[
\frac {4 \sqrt {y}\, x^{2}-y^{{7}/{2}} c_{1} +\left (2 c_{1} x +4\right ) y^{{5}/{2}}+4 y^{2}+\left (-c_{1} x^{2}-8 x +1\right ) y^{{3}/{2}}-4 x y}{\left (x -y\right )^{2} y^{{3}/{2}}} = 0
\]
Time used: 60.232 (sec). Leaf size: 2213
\begin{align*}
y(x)\to \frac {1}{3} \left (-\sqrt [3]{x^3+3 e^{c_1} x^2+6 \sqrt {3} \sqrt {-e^{4 c_1} \left (x^3+3 e^{c_1} x^2-e^{2 c_1} (8 x-3) x+e^{4 c_1} (16 x+1)+e^{3 c_1} (20 x+1)\right )}-3 e^{2 c_1} (4 x-1) x+6 e^{4 c_1} (8 x-5)+e^{3 c_1} (12 x+1)-96 e^{5 c_1}-64 e^{6 c_1}}+\frac {-x^2-2 e^{c_1} x+e^{2 c_1} (8 x-1)-16 e^{3 c_1}-16 e^{4 c_1}}{\sqrt [3]{x^3+3 e^{c_1} x^2+6 \sqrt {3} \sqrt {-e^{4 c_1} \left (x^3+3 e^{c_1} x^2-e^{2 c_1} (8 x-3) x+e^{4 c_1} (16 x+1)+e^{3 c_1} (20 x+1)\right )}-3 e^{2 c_1} (4 x-1) x+6 e^{4 c_1} (8 x-5)+e^{3 c_1} (12 x+1)-96 e^{5 c_1}-64 e^{6 c_1}}}+2 \left (x+e^{c_1}+2 e^{2 c_1}\right )\right ) \\
y(x)\to \frac {1}{6} \left (\left (1-i \sqrt {3}\right ) \sqrt [3]{x^3+3 e^{c_1} x^2+6 \sqrt {3} \sqrt {-e^{4 c_1} \left (x^3+3 e^{c_1} x^2-e^{2 c_1} (8 x-3) x+e^{4 c_1} (16 x+1)+e^{3 c_1} (20 x+1)\right )}-3 e^{2 c_1} (4 x-1) x+6 e^{4 c_1} (8 x-5)+e^{3 c_1} (12 x+1)-96 e^{5 c_1}-64 e^{6 c_1}}+\frac {\left (1+i \sqrt {3}\right ) \left (x^2+2 e^{c_1} x+e^{2 c_1} (1-8 x)+16 e^{3 c_1}+16 e^{4 c_1}\right )}{\sqrt [3]{x^3+3 e^{c_1} x^2+6 \sqrt {3} \sqrt {-e^{4 c_1} \left (x^3+3 e^{c_1} x^2-e^{2 c_1} (8 x-3) x+e^{4 c_1} (16 x+1)+e^{3 c_1} (20 x+1)\right )}-3 e^{2 c_1} (4 x-1) x+6 e^{4 c_1} (8 x-5)+e^{3 c_1} (12 x+1)-96 e^{5 c_1}-64 e^{6 c_1}}}+4 \left (x+e^{c_1}+2 e^{2 c_1}\right )\right ) \\
y(x)\to \frac {1}{6} \left (\left (1+i \sqrt {3}\right ) \sqrt [3]{x^3+3 e^{c_1} x^2+6 \sqrt {3} \sqrt {-e^{4 c_1} \left (x^3+3 e^{c_1} x^2-e^{2 c_1} (8 x-3) x+e^{4 c_1} (16 x+1)+e^{3 c_1} (20 x+1)\right )}-3 e^{2 c_1} (4 x-1) x+6 e^{4 c_1} (8 x-5)+e^{3 c_1} (12 x+1)-96 e^{5 c_1}-64 e^{6 c_1}}+\frac {\left (1-i \sqrt {3}\right ) \left (x^2+2 e^{c_1} x+e^{2 c_1} (1-8 x)+16 e^{3 c_1}+16 e^{4 c_1}\right )}{\sqrt [3]{x^3+3 e^{c_1} x^2+6 \sqrt {3} \sqrt {-e^{4 c_1} \left (x^3+3 e^{c_1} x^2-e^{2 c_1} (8 x-3) x+e^{4 c_1} (16 x+1)+e^{3 c_1} (20 x+1)\right )}-3 e^{2 c_1} (4 x-1) x+6 e^{4 c_1} (8 x-5)+e^{3 c_1} (12 x+1)-96 e^{5 c_1}-64 e^{6 c_1}}}+4 \left (x+e^{c_1}+2 e^{2 c_1}\right )\right ) \\
y(x)\to \frac {1}{3} \left (-\sqrt [3]{x^3-3 e^{c_1} x^2+6 \sqrt {3} \sqrt {e^{4 c_1} \left (-x^3+3 e^{c_1} x^2+e^{2 c_1} (8 x-3) x-e^{4 c_1} (16 x+1)+e^{3 c_1} (20 x+1)\right )}-3 e^{2 c_1} (4 x-1) x+6 e^{4 c_1} (8 x-5)-e^{3 c_1} (12 x+1)+96 e^{5 c_1}-64 e^{6 c_1}}+\frac {-x^2+2 e^{c_1} x+e^{2 c_1} (8 x-1)+16 e^{3 c_1}-16 e^{4 c_1}}{\sqrt [3]{x^3-3 e^{c_1} x^2+6 \sqrt {3} \sqrt {e^{4 c_1} \left (-x^3+3 e^{c_1} x^2+e^{2 c_1} (8 x-3) x-e^{4 c_1} (16 x+1)+e^{3 c_1} (20 x+1)\right )}-3 e^{2 c_1} (4 x-1) x+6 e^{4 c_1} (8 x-5)-e^{3 c_1} (12 x+1)+96 e^{5 c_1}-64 e^{6 c_1}}}+2 \left (x-e^{c_1}+2 e^{2 c_1}\right )\right ) \\
y(x)\to \frac {1}{6} \left (\left (1-i \sqrt {3}\right ) \sqrt [3]{x^3-3 e^{c_1} x^2+6 \sqrt {3} \sqrt {e^{4 c_1} \left (-x^3+3 e^{c_1} x^2+e^{2 c_1} (8 x-3) x-e^{4 c_1} (16 x+1)+e^{3 c_1} (20 x+1)\right )}-3 e^{2 c_1} (4 x-1) x+6 e^{4 c_1} (8 x-5)-e^{3 c_1} (12 x+1)+96 e^{5 c_1}-64 e^{6 c_1}}+\frac {\left (1+i \sqrt {3}\right ) \left (x^2-2 e^{c_1} x+e^{2 c_1} (1-8 x)-16 e^{3 c_1}+16 e^{4 c_1}\right )}{\sqrt [3]{x^3-3 e^{c_1} x^2+6 \sqrt {3} \sqrt {e^{4 c_1} \left (-x^3+3 e^{c_1} x^2+e^{2 c_1} (8 x-3) x-e^{4 c_1} (16 x+1)+e^{3 c_1} (20 x+1)\right )}-3 e^{2 c_1} (4 x-1) x+6 e^{4 c_1} (8 x-5)-e^{3 c_1} (12 x+1)+96 e^{5 c_1}-64 e^{6 c_1}}}+4 \left (x-e^{c_1}+2 e^{2 c_1}\right )\right ) \\
y(x)\to \frac {1}{6} \left (\left (1+i \sqrt {3}\right ) \sqrt [3]{x^3-3 e^{c_1} x^2+6 \sqrt {3} \sqrt {e^{4 c_1} \left (-x^3+3 e^{c_1} x^2+e^{2 c_1} (8 x-3) x-e^{4 c_1} (16 x+1)+e^{3 c_1} (20 x+1)\right )}-3 e^{2 c_1} (4 x-1) x+6 e^{4 c_1} (8 x-5)-e^{3 c_1} (12 x+1)+96 e^{5 c_1}-64 e^{6 c_1}}+\frac {\left (1-i \sqrt {3}\right ) \left (x^2-2 e^{c_1} x+e^{2 c_1} (1-8 x)-16 e^{3 c_1}+16 e^{4 c_1}\right )}{\sqrt [3]{x^3-3 e^{c_1} x^2+6 \sqrt {3} \sqrt {e^{4 c_1} \left (-x^3+3 e^{c_1} x^2+e^{2 c_1} (8 x-3) x-e^{4 c_1} (16 x+1)+e^{3 c_1} (20 x+1)\right )}-3 e^{2 c_1} (4 x-1) x+6 e^{4 c_1} (8 x-5)-e^{3 c_1} (12 x+1)+96 e^{5 c_1}-64 e^{6 c_1}}}+4 \left (x-e^{c_1}+2 e^{2 c_1}\right )\right ) \\
\end{align*}