60.2.189 problem 765

Internal problem ID [10776]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 765
Date solved : Monday, January 27, 2025 at 09:43:36 PM
CAS classification : [_Bernoulli]

\begin{align*} y^{\prime }&=\frac {y \left (-1-\ln \left (\frac {\left (x -1\right ) \left (1+x \right )}{x}\right )+\ln \left (\frac {\left (x -1\right ) \left (1+x \right )}{x}\right ) x y\right )}{x} \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 53

dsolve(diff(y(x),x) = y(x)*(-1-ln((x-1)*(x+1)/x)+ln((x-1)*(x+1)/x)*x*y(x))/x,y(x), singsol=all)
 
\[ y = \frac {{\mathrm e}^{\operatorname {dilog}\left (x +1\right )}}{x \left (c_{1} {\mathrm e}^{\operatorname {dilog}\left (x \right )+\frac {\ln \left (x \right )^{2}}{2}} \left (\frac {x^{2}-1}{x}\right )^{\ln \left (x \right )} \left (x +1\right )^{-\ln \left (x \right )}+{\mathrm e}^{\operatorname {dilog}\left (x +1\right )}\right )} \]

Solution by Mathematica

Time used: 0.734 (sec). Leaf size: 240

DSolve[D[y[x],x] == (y[x]*(-1 - Log[((-1 + x)*(1 + x))/x] + x*Log[((-1 + x)*(1 + x))/x]*y[x]))/x,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {e^{\operatorname {PolyLog}(2,-x)-\operatorname {PolyLog}(2,1-x)} x^{-\frac {\log (x)}{2}+\log (x+1)-\log \left (x-\frac {1}{x}\right )-1}}{-\int _1^xe^{\operatorname {PolyLog}(2,-K[1])-\operatorname {PolyLog}(2,1-K[1])} K[1]^{-\frac {1}{2} \log (K[1])+\log (K[1]+1)-\log \left (K[1]-\frac {1}{K[1]}\right )-1} \log \left (K[1]-\frac {1}{K[1]}\right )dK[1]+c_1} \\ y(x)\to 0 \\ y(x)\to -\frac {e^{\operatorname {PolyLog}(2,-x)-\operatorname {PolyLog}(2,1-x)} x^{-\frac {\log (x)}{2}+\log (x+1)-\log \left (x-\frac {1}{x}\right )-1}}{\int _1^xe^{\operatorname {PolyLog}(2,-K[1])-\operatorname {PolyLog}(2,1-K[1])} K[1]^{-\frac {1}{2} \log (K[1])+\log (K[1]+1)-\log \left (K[1]-\frac {1}{K[1]}\right )-1} \log \left (K[1]-\frac {1}{K[1]}\right )dK[1]} \\ \end{align*}