7.16.1 problem 1

Internal problem ID [498]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.4 (Method of Frobenius: The exceptional cases). Problems at page 246
Problem number : 1
Date solved : Monday, January 27, 2025 at 02:54:09 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 44

Order:=6; 
dsolve(x*diff(y(x),x$2)+(3-x)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);
 
\[ y = c_1 \left (1+\frac {1}{3} x +\frac {1}{12} x^{2}+\frac {1}{60} x^{3}+\frac {1}{360} x^{4}+\frac {1}{2520} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\frac {c_2 \left (-2-2 x -x^{2}-\frac {1}{3} x^{3}-\frac {1}{12} x^{4}-\frac {1}{60} x^{5}+\operatorname {O}\left (x^{6}\right )\right )}{x^{2}} \]

Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 60

AsymptoticDSolveValue[x*D[y[x],{x,2}]+(3-x)*D[y[x],x]-y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {x^2}{24}+\frac {1}{x^2}+\frac {x}{6}+\frac {1}{x}+\frac {1}{2}\right )+c_2 \left (\frac {x^4}{360}+\frac {x^3}{60}+\frac {x^2}{12}+\frac {x}{3}+1\right ) \]