60.2.198 problem 774

Internal problem ID [10785]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 774
Date solved : Monday, January 27, 2025 at 09:44:18 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y^{\prime }&=\frac {-4 y x -x^{3}-2 a \,x^{2}-4 x +8}{8 y+2 x^{2}+4 a x +8} \end{align*}

Solution by Maple

Time used: 0.042 (sec). Leaf size: 47

dsolve(diff(y(x),x) = (-4*x*y(x)-x^3-2*a*x^2-4*x+8)/(8*y(x)+2*x^2+4*a*x+8),y(x), singsol=all)
 
\[ y = \frac {-2 a^{2} x -a \,x^{2}-8 \operatorname {LambertW}\left (-\frac {{\mathrm e}^{-1+\frac {\left (-x +c_{1} \right ) a^{2}}{4}-\frac {a}{2}}}{2}\right )-4 a -8}{4 a} \]

Solution by Mathematica

Time used: 1.125 (sec). Leaf size: 72

DSolve[D[y[x],x] == (8 - 4*x - 2*a*x^2 - x^3 - 4*x*y[x])/(8 + 4*a*x + 2*x^2 + 8*y[x]),y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {8 W\left (-e^{-\frac {a^2 x}{4}-1+c_1}\right )+2 a^2 x+a \left (x^2+4\right )+8}{4 a} \\ y(x)\to -\frac {2 a^2 x+a \left (x^2+4\right )+8}{4 a} \\ \end{align*}