60.1.389 problem 400

Internal problem ID [10403]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 400
Date solved : Wednesday, March 05, 2025 at 10:44:53 AM
CAS classification : [[_homogeneous, `class G`]]

\begin{align*} 2 {y^{\prime }}^{2}-2 x^{2} y^{\prime }+3 x y&=0 \end{align*}

Maple. Time used: 0.046 (sec). Leaf size: 77
ode:=2*diff(y(x),x)^2-2*x^2*diff(y(x),x)+3*x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {x^{3}}{6} \\ y &= \frac {\sqrt {6}\, \sqrt {-c_{1} x}\, x}{3}+c_{1} \\ y &= -\frac {\sqrt {6}\, \sqrt {-c_{1} x}\, x}{3}+c_{1} \\ y &= -\frac {\sqrt {6}\, \sqrt {-c_{1} x}\, x}{3}+c_{1} \\ y &= \frac {\sqrt {6}\, \sqrt {-c_{1} x}\, x}{3}+c_{1} \\ \end{align*}
Mathematica. Time used: 0.616 (sec). Leaf size: 146
ode=3*x*y[x] - 2*x^2*D[y[x],x] + 2*D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [\frac {1}{3} \log (y(x))-\frac {2 \sqrt {x^4-6 x y(x)} \text {arctanh}\left (\frac {x^{3/2}}{\sqrt {x^3-6 y(x)}}\right )}{3 \sqrt {x} \sqrt {x^3-6 y(x)}}&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {2 \sqrt {x^4-6 x y(x)} \text {arctanh}\left (\frac {x^{3/2}}{\sqrt {x^3-6 y(x)}}\right )}{3 \sqrt {x} \sqrt {x^3-6 y(x)}}+\frac {1}{3} \log (y(x))&=c_1,y(x)\right ] \\ y(x)\to \frac {x^3}{6} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x**2*Derivative(y(x), x) + 3*x*y(x) + 2*Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -x**2/2 - sqrt(x*(x**3 - 6*y(x)))/2 + Derivative(y(x), x) cannot be solved by the factorable group method