60.2.207 problem 783

Internal problem ID [10794]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 783
Date solved : Monday, January 27, 2025 at 09:45:38 PM
CAS classification : [_Bernoulli]

\begin{align*} y^{\prime }&=-\frac {y \left (\tanh \left (x \right )+\ln \left (2 x \right ) x -\ln \left (2 x \right ) x^{2} y\right )}{x \tanh \left (x \right )} \end{align*}

Solution by Maple

Time used: 0.005 (sec). Leaf size: 62

dsolve(diff(y(x),x) = -y(x)*(tanh(x)+ln(2*x)*x-ln(2*x)*x^2*y(x))/x/tanh(x),y(x), singsol=all)
 
\[ y = \frac {{\mathrm e}^{-\int \frac {1+x \left (\ln \left (2\right )+\ln \left (x \right )\right ) \coth \left (x \right )}{x}d x}}{-\int \coth \left (x \right ) {\mathrm e}^{-\int \frac {1+x \left (\ln \left (2\right )+\ln \left (x \right )\right ) \coth \left (x \right )}{x}d x} \left (\ln \left (2\right )+\ln \left (x \right )\right ) x d x +c_{1}} \]

Solution by Mathematica

Time used: 0.877 (sec). Leaf size: 89

DSolve[D[y[x],x] == -((Coth[x]*y[x]*(x*Log[2*x] + Tanh[x] - x^2*Log[2*x]*y[x]))/x),y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {\exp \left (\int _1^x\left (-\coth (K[1]) \log (2 K[1])-\frac {1}{K[1]}\right )dK[1]\right )}{-\int _1^x\exp \left (\int _1^{K[2]}\left (-\coth (K[1]) \log (2 K[1])-\frac {1}{K[1]}\right )dK[1]\right ) \coth (K[2]) K[2] \log (2 K[2])dK[2]+c_1} \\ y(x)\to 0 \\ \end{align*}