Internal
problem
ID
[10801]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
790
Date
solved
:
Monday, January 27, 2025 at 09:52:56 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]
✗ Solution by Maple
dsolve(diff(y(x),x) = (2*x*ln(1/(x-1))-coth((x+1)/(x-1))+coth((x+1)/(x-1))*y(x)^2-2*coth((x+1)/(x-1))*x^2*y(x)+coth((x+1)/(x-1))*x^4)/ln(1/(x-1)),y(x), singsol=all)
✓ Solution by Mathematica
Time used: 9.442 (sec). Leaf size: 228
DSolve[D[y[x],x] == (-Coth[(1 + x)/(-1 + x)] + x^4*Coth[(1 + x)/(-1 + x)] + 2*x*Log[(-1 + x)^(-1)] - 2*x^2*Coth[(1 + x)/(-1 + x)]*y[x] + Coth[(1 + x)/(-1 + x)]*y[x]^2)/Log[(-1 + x)^(-1)],y[x],x,IncludeSingularSolutions -> True]