60.2.227 problem 803

Internal problem ID [10814]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 803
Date solved : Tuesday, January 28, 2025 at 05:16:43 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(y)]`]]

\begin{align*} y^{\prime }&=\frac {\textit {\_F1} \left (y^{2}-2 \ln \left (x \right )\right )}{\sqrt {y^{2}}\, x} \end{align*}

Solution by Maple

Time used: 0.196 (sec). Leaf size: 65

dsolve(diff(y(x),x) = _F1(y(x)^2-2*ln(x))/(y(x)^2)^(1/2)/x,y(x), singsol=all)
 
\begin{align*} y &= \sqrt {2 \ln \left (x \right )+2 \operatorname {RootOf}\left (\ln \left (x \right )-\int _{}^{\textit {\_Z}}\frac {1}{f_{1} \left (2 \textit {\_a} \right )-1}d \textit {\_a} +c_{1} \right )} \\ y &= -\sqrt {2 \ln \left (x \right )+2 \operatorname {RootOf}\left (\ln \left (x \right )-\int _{}^{\textit {\_Z}}\frac {1}{f_{1} \left (2 \textit {\_a} \right )-1}d \textit {\_a} +c_{1} \right )} \\ \end{align*}

Solution by Mathematica

Time used: 0.850 (sec). Leaf size: 603

DSolve[D[y[x],x] == F1[-2*Log[x] + y[x]^2]/(x*Sqrt[y[x]^2]),y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\int _1^{y(x)}\left (\frac {\sqrt {K[2]^2} \text {F1}\left (K[2]^2-2 \log (x)\right )}{\left (\text {F1}\left (K[2]^2-2 \log (x)\right )-1\right ) \left (\text {F1}\left (K[2]^2-2 \log (x)\right )+1\right )}+\frac {K[2]}{\left (\text {F1}\left (K[2]^2-2 \log (x)\right )-1\right ) \left (\text {F1}\left (K[2]^2-2 \log (x)\right )+1\right )}-\int _1^x\left (\frac {2 K[2] \text {F1}''\left (K[2]^2-2 \log (K[1])\right ) \text {F1}\left (K[2]^2-2 \log (K[1])\right )^2}{\left (\text {F1}\left (K[2]^2-2 \log (K[1])\right )-1\right )^2 \left (\text {F1}\left (K[2]^2-2 \log (K[1])\right )+1\right ) K[1]}+\frac {2 K[2] \text {F1}''\left (K[2]^2-2 \log (K[1])\right ) \text {F1}\left (K[2]^2-2 \log (K[1])\right )^2}{\left (\text {F1}\left (K[2]^2-2 \log (K[1])\right )-1\right ) \left (\text {F1}\left (K[2]^2-2 \log (K[1])\right )+1\right )^2 K[1]}-\frac {4 K[2] \text {F1}''\left (K[2]^2-2 \log (K[1])\right ) \text {F1}\left (K[2]^2-2 \log (K[1])\right )}{\left (\text {F1}\left (K[2]^2-2 \log (K[1])\right )-1\right ) \left (\text {F1}\left (K[2]^2-2 \log (K[1])\right )+1\right ) K[1]}+\frac {2 \sqrt {K[2]^2} \text {F1}''\left (K[2]^2-2 \log (K[1])\right ) \text {F1}\left (K[2]^2-2 \log (K[1])\right )}{\left (\text {F1}\left (K[2]^2-2 \log (K[1])\right )-1\right )^2 \left (\text {F1}\left (K[2]^2-2 \log (K[1])\right )+1\right ) K[1]}+\frac {2 \sqrt {K[2]^2} \text {F1}''\left (K[2]^2-2 \log (K[1])\right ) \text {F1}\left (K[2]^2-2 \log (K[1])\right )}{\left (\text {F1}\left (K[2]^2-2 \log (K[1])\right )-1\right ) \left (\text {F1}\left (K[2]^2-2 \log (K[1])\right )+1\right )^2 K[1]}-\frac {2 \sqrt {K[2]^2} \text {F1}''\left (K[2]^2-2 \log (K[1])\right )}{\left (\text {F1}\left (K[2]^2-2 \log (K[1])\right )-1\right ) \left (\text {F1}\left (K[2]^2-2 \log (K[1])\right )+1\right ) K[1]}\right )dK[1]\right )dK[2]+\int _1^x\left (-\frac {\text {F1}\left (y(x)^2-2 \log (K[1])\right )^2}{\left (\text {F1}\left (y(x)^2-2 \log (K[1])\right )-1\right ) \left (\text {F1}\left (y(x)^2-2 \log (K[1])\right )+1\right ) K[1]}-\frac {\sqrt {y(x)^2} \text {F1}\left (y(x)^2-2 \log (K[1])\right )}{\left (\text {F1}\left (y(x)^2-2 \log (K[1])\right )-1\right ) \left (\text {F1}\left (y(x)^2-2 \log (K[1])\right )+1\right ) K[1] y(x)}\right )dK[1]=c_1,y(x)\right ] \]