60.1.434 problem 446

Internal problem ID [10448]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 446
Date solved : Wednesday, March 05, 2025 at 10:50:55 AM
CAS classification : [[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

\begin{align*} \left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}-1&=0 \end{align*}

Maple. Time used: 0.080 (sec). Leaf size: 57
ode:=(x^2+1)*diff(y(x),x)^2-2*x*y(x)*diff(y(x),x)+y(x)^2-1 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \sqrt {x^{2}+1} \\ y &= -\sqrt {x^{2}+1} \\ y &= c_{1} x -\sqrt {-c_{1}^{2}+1} \\ y &= c_{1} x +\sqrt {-c_{1}^{2}+1} \\ \end{align*}
Mathematica. Time used: 0.113 (sec). Leaf size: 73
ode=-1 + y[x]^2 - 2*x*y[x]*D[y[x],x] + (1 + x^2)*D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to c_1 x-\sqrt {1-c_1{}^2} \\ y(x)\to c_1 x+\sqrt {1-c_1{}^2} \\ y(x)\to -\sqrt {x^2+1} \\ y(x)\to \sqrt {x^2+1} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*y(x)*Derivative(y(x), x) + (x**2 + 1)*Derivative(y(x), x)**2 + y(x)**2 - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out