Internal
problem
ID
[10832]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
821
Date
solved
:
Monday, January 27, 2025 at 10:11:11 PM
CAS
classification
:
[_rational]
\begin{align*} y^{\prime }&=\frac {y \left (y x +1\right )}{x \left (-y x -1+y^{4} x^{3}\right )} \end{align*}
Time used: 0.008 (sec). Leaf size: 27
Time used: 60.177 (sec). Leaf size: 1993
\begin{align*}
y(x)\to -\frac {1}{2} \sqrt {\frac {\sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}{6 x^3}+\frac {8+3 c_1 x}{3 \sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}+\frac {c_1{}^2}{4}}-\frac {1}{2} \sqrt {-\frac {\sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}{6 x^3}+\frac {-8-3 c_1 x}{3 \sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}-\frac {-\frac {4}{x^2}+c_1{}^3}{4 \sqrt {\frac {\sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}{6 x^3}+\frac {8+3 c_1 x}{3 \sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}+\frac {c_1{}^2}{4}}}+\frac {c_1{}^2}{2}}+\frac {c_1}{4} \\
y(x)\to -\frac {1}{2} \sqrt {\frac {\sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}{6 x^3}+\frac {8+3 c_1 x}{3 \sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}+\frac {c_1{}^2}{4}}+\frac {1}{2} \sqrt {-\frac {\sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}{6 x^3}+\frac {-8-3 c_1 x}{3 \sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}-\frac {-\frac {4}{x^2}+c_1{}^3}{4 \sqrt {\frac {\sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}{6 x^3}+\frac {8+3 c_1 x}{3 \sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}+\frac {c_1{}^2}{4}}}+\frac {c_1{}^2}{2}}+\frac {c_1}{4} \\
y(x)\to \frac {1}{2} \sqrt {\frac {\sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}{6 x^3}+\frac {8+3 c_1 x}{3 \sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}+\frac {c_1{}^2}{4}}-\frac {1}{2} \sqrt {-\frac {\sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}{6 x^3}+\frac {-8-3 c_1 x}{3 \sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}+\frac {-\frac {4}{x^2}+c_1{}^3}{4 \sqrt {\frac {\sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}{6 x^3}+\frac {8+3 c_1 x}{3 \sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}+\frac {c_1{}^2}{4}}}+\frac {c_1{}^2}{2}}+\frac {c_1}{4} \\
y(x)\to \frac {1}{2} \sqrt {\frac {\sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}{6 x^3}+\frac {8+3 c_1 x}{3 \sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}+\frac {c_1{}^2}{4}}+\frac {1}{2} \sqrt {-\frac {\sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}{6 x^3}+\frac {-8-3 c_1 x}{3 \sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}+\frac {-\frac {4}{x^2}+c_1{}^3}{4 \sqrt {\frac {\sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}{6 x^3}+\frac {8+3 c_1 x}{3 \sqrt [3]{36 c_1{}^2 x^6+27 x^5+\sqrt {x^9 \left (216 (-1+6 c_1) c_1{}^3 x^3+216 c_1{}^2 x^2-9 (-81+512 c_1) x-4096\right )}}}+\frac {c_1{}^2}{4}}}+\frac {c_1{}^2}{2}}+\frac {c_1}{4} \\
\end{align*}