60.1.445 problem 457

Internal problem ID [10459]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 457
Date solved : Wednesday, March 05, 2025 at 10:54:14 AM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} x^{4} {y^{\prime }}^{2}-x y^{\prime }-y&=0 \end{align*}

Maple. Time used: 1.348 (sec). Leaf size: 77
ode:=x^4*diff(y(x),x)^2-x*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {1}{4 x^{2}} \\ y &= \frac {-c_{1} i-x}{c_{1}^{2} x} \\ y &= \frac {c_{1} i-x}{x \,c_{1}^{2}} \\ y &= \frac {c_{1} i-x}{x \,c_{1}^{2}} \\ y &= \frac {-c_{1} i-x}{c_{1}^{2} x} \\ \end{align*}
Mathematica. Time used: 0.526 (sec). Leaf size: 123
ode=-y[x] - x*D[y[x],x] + x^4*D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [-\frac {x \sqrt {4 x^2 y(x)+1} \text {arctanh}\left (\sqrt {4 x^2 y(x)+1}\right )}{\sqrt {4 x^4 y(x)+x^2}}-\frac {1}{2} \log (y(x))&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {x \sqrt {4 x^2 y(x)+1} \text {arctanh}\left (\sqrt {4 x^2 y(x)+1}\right )}{\sqrt {4 x^4 y(x)+x^2}}-\frac {1}{2} \log (y(x))&=c_1,y(x)\right ] \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 3.862 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**4*Derivative(y(x), x)**2 - x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} \left (C_{1} + \frac {2}{x}\right )}{4} \]