Internal
problem
ID
[10861]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
850
Date
solved
:
Tuesday, January 28, 2025 at 05:26:32 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(y)]`]]
\begin{align*} y^{\prime }&=\frac {1}{\sin \left (x \right )}+\textit {\_F1} \left (y-\ln \left (\sin \left (x \right )\right )+\ln \left (\cos \left (x \right )+1\right )\right ) \end{align*}
Time used: 0.233 (sec). Leaf size: 27
\[
y = -\ln \left (\csc \left (x \right )+\cot \left (x \right )\right )+\operatorname {RootOf}\left (-x +\int _{}^{\textit {\_Z}}\frac {1}{f_{1} \left (\textit {\_a} \right )}d \textit {\_a} +c_{1} \right )
\]
Time used: 0.545 (sec). Leaf size: 1438
\[
\text {Solve}\left [\int _1^x-\frac {\left (\cot ^2(K[1])+\csc (K[1]) \cot (K[1])+1\right ) (\csc (K[1])+\text {F1}(\log (\cos (K[1])+1)-\log (\sin (K[1]))+y(x))) \sin (K[1])}{-\cot ^2(K[1])+\text {F1}(\log (\cos (K[1])+1)-\log (\sin (K[1]))+y(x)) \cot (K[1])+\csc ^2(K[1])+\csc (K[1]) \text {F1}(\log (\cos (K[1])+1)-\log (\sin (K[1]))+y(x))-1}dK[1]+\int _1^{y(x)}-\frac {\sin (x) \left (\int _1^x\left (\frac {\left (\cot ^2(K[1])+\csc (K[1]) \cot (K[1])+1\right ) (\csc (K[1])+\text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))) \sin (K[1]) \left (\cot (K[1]) \text {F1}''(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))+\csc (K[1]) \text {F1}''(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))\right )}{\left (-\cot ^2(K[1])+\text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1]))) \cot (K[1])+\csc ^2(K[1])+\csc (K[1]) \text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))-1\right )^2}-\frac {\left (\cot ^2(K[1])+\csc (K[1]) \cot (K[1])+1\right ) \sin (K[1]) \text {F1}''(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))}{-\cot ^2(K[1])+\text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1]))) \cot (K[1])+\csc ^2(K[1])+\csc (K[1]) \text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))-1}\right )dK[1] \csc ^3(x)+\text {F1}(K[2]+\log (\cos (x)+1)-\log (\sin (x))) \int _1^x\left (\frac {\left (\cot ^2(K[1])+\csc (K[1]) \cot (K[1])+1\right ) (\csc (K[1])+\text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))) \sin (K[1]) \left (\cot (K[1]) \text {F1}''(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))+\csc (K[1]) \text {F1}''(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))\right )}{\left (-\cot ^2(K[1])+\text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1]))) \cot (K[1])+\csc ^2(K[1])+\csc (K[1]) \text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))-1\right )^2}-\frac {\left (\cot ^2(K[1])+\csc (K[1]) \cot (K[1])+1\right ) \sin (K[1]) \text {F1}''(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))}{-\cot ^2(K[1])+\text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1]))) \cot (K[1])+\csc ^2(K[1])+\csc (K[1]) \text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))-1}\right )dK[1] \csc ^2(x)-\cot (x) \csc (x)-\cot ^2(x) \int _1^x\left (\frac {\left (\cot ^2(K[1])+\csc (K[1]) \cot (K[1])+1\right ) (\csc (K[1])+\text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))) \sin (K[1]) \left (\cot (K[1]) \text {F1}''(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))+\csc (K[1]) \text {F1}''(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))\right )}{\left (-\cot ^2(K[1])+\text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1]))) \cot (K[1])+\csc ^2(K[1])+\csc (K[1]) \text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))-1\right )^2}-\frac {\left (\cot ^2(K[1])+\csc (K[1]) \cot (K[1])+1\right ) \sin (K[1]) \text {F1}''(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))}{-\cot ^2(K[1])+\text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1]))) \cot (K[1])+\csc ^2(K[1])+\csc (K[1]) \text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))-1}\right )dK[1] \csc (x)+\cot (x) \text {F1}(K[2]+\log (\cos (x)+1)-\log (\sin (x))) \int _1^x\left (\frac {\left (\cot ^2(K[1])+\csc (K[1]) \cot (K[1])+1\right ) (\csc (K[1])+\text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))) \sin (K[1]) \left (\cot (K[1]) \text {F1}''(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))+\csc (K[1]) \text {F1}''(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))\right )}{\left (-\cot ^2(K[1])+\text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1]))) \cot (K[1])+\csc ^2(K[1])+\csc (K[1]) \text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))-1\right )^2}-\frac {\left (\cot ^2(K[1])+\csc (K[1]) \cot (K[1])+1\right ) \sin (K[1]) \text {F1}''(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))}{-\cot ^2(K[1])+\text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1]))) \cot (K[1])+\csc ^2(K[1])+\csc (K[1]) \text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))-1}\right )dK[1] \csc (x)-\int _1^x\left (\frac {\left (\cot ^2(K[1])+\csc (K[1]) \cot (K[1])+1\right ) (\csc (K[1])+\text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))) \sin (K[1]) \left (\cot (K[1]) \text {F1}''(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))+\csc (K[1]) \text {F1}''(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))\right )}{\left (-\cot ^2(K[1])+\text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1]))) \cot (K[1])+\csc ^2(K[1])+\csc (K[1]) \text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))-1\right )^2}-\frac {\left (\cot ^2(K[1])+\csc (K[1]) \cot (K[1])+1\right ) \sin (K[1]) \text {F1}''(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))}{-\cot ^2(K[1])+\text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1]))) \cot (K[1])+\csc ^2(K[1])+\csc (K[1]) \text {F1}(K[2]+\log (\cos (K[1])+1)-\log (\sin (K[1])))-1}\right )dK[1] \csc (x)-\cot ^2(x)-1\right )}{-\cot ^2(x)+\text {F1}(K[2]+\log (\cos (x)+1)-\log (\sin (x))) \cot (x)+\csc ^2(x)+\csc (x) \text {F1}(K[2]+\log (\cos (x)+1)-\log (\sin (x)))-1}dK[2]=c_1,y(x)\right ]
\]