60.1.494 problem 507

Internal problem ID [10508]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 507
Date solved : Wednesday, March 05, 2025 at 11:35:54 AM
CAS classification : [`y=_G(x,y')`]

\begin{align*} \left (y^{4}-a^{2} x^{2}\right ) {y^{\prime }}^{2}+2 a^{2} x y y^{\prime }+y^{2} \left (y^{2}-a^{2}\right )&=0 \end{align*}

Maple. Time used: 1.697 (sec). Leaf size: 207
ode:=(y(x)^4-a^2*x^2)*diff(y(x),x)^2+2*a^2*x*y(x)*diff(y(x),x)+y(x)^2*(y(x)^2-a^2) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y-\operatorname {RootOf}\left (c_{1} \sqrt {\operatorname {RootOf}\left (\left (-y^{4}+a^{2} x^{2}\right ) \textit {\_Z}^{2}+a^{2}-y^{2}-2 a^{2} x \textit {\_Z} \right ) \textit {\_Z}}+a \operatorname {hypergeom}\left (\left [-\frac {1}{4}, \frac {1}{4}\right ], \left [\frac {3}{4}\right ], \frac {\textit {\_Z}^{2} \left (2 a^{2} x \operatorname {RootOf}\left (\left (-y^{4}+a^{2} x^{2}\right ) \textit {\_Z}^{2}+a^{2}-y^{2}-2 a^{2} x \textit {\_Z} \right )+\textit {\_Z}^{2}-a^{2}\right )}{\textit {\_Z}^{4}-a^{2} x^{2}}\right )+\textit {\_Z} \left (-\frac {a^{2} \left (2 \operatorname {RootOf}\left (\left (-y^{4}+a^{2} x^{2}\right ) \textit {\_Z}^{2}+a^{2}-y^{2}-2 a^{2} x \textit {\_Z} \right ) \textit {\_Z}^{2} x -\textit {\_Z}^{2}+x^{2}\right )}{\textit {\_Z}^{4}-a^{2} x^{2}}\right )^{{1}/{4}}\right ) &= 0 \\ \end{align*}
Mathematica. Time used: 104.786 (sec). Leaf size: 395
ode=y[x]^2*(-a^2 + y[x]^2) + 2*a^2*x*y[x]*D[y[x],x] + (-(a^2*x^2) + y[x]^4)*D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [\left \{x&=\frac {a^2 K[1] y(K[1])-\sqrt {a^2 K[1]^2 \left (K[1]^2+1\right ) y(K[1])^4}}{a^2 K[1]^2},y(x)=\frac {-4 a \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{4},\frac {3}{4},-K[1]^2\right )-a c_1 \sqrt {K[1]}}{4 \sqrt [4]{K[1]^2+1}}\right \},\{y(x),K[1]\}\right ] \\ \text {Solve}\left [\left \{x&=\frac {a^2 K[1] y(K[1])-\sqrt {a^2 K[1]^2 \left (K[1]^2+1\right ) y(K[1])^4}}{a^2 K[1]^2},y(x)=\frac {4 a \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{4},\frac {3}{4},-K[1]^2\right )-a c_1 \sqrt {K[1]}}{4 \sqrt [4]{K[1]^2+1}}\right \},\{y(x),K[1]\}\right ] \\ \text {Solve}\left [\left \{x&=\frac {a^2 K[1] y(K[1])+\sqrt {a^2 K[1]^2 \left (K[1]^2+1\right ) y(K[1])^4}}{a^2 K[1]^2},y(x)=\frac {-4 a \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{4},\frac {3}{4},-K[1]^2\right )+a c_1 \sqrt {K[1]}}{4 \sqrt [4]{K[1]^2+1}}\right \},\{y(x),K[1]\}\right ] \\ \text {Solve}\left [\left \{x&=\frac {a^2 K[1] y(K[1])+\sqrt {a^2 K[1]^2 \left (K[1]^2+1\right ) y(K[1])^4}}{a^2 K[1]^2},y(x)=\frac {4 a \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{4},\frac {3}{4},-K[1]^2\right )+a c_1 \sqrt {K[1]}}{4 \sqrt [4]{K[1]^2+1}}\right \},\{y(x),K[1]\}\right ] \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(2*a**2*x*y(x)*Derivative(y(x), x) + (-a**2 + y(x)**2)*y(x)**2 + (-a**2*x**2 + y(x)**4)*Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out