60.1.494 problem 507
Internal
problem
ID
[10508]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
507
Date
solved
:
Wednesday, March 05, 2025 at 11:35:54 AM
CAS
classification
:
[`y=_G(x,y')`]
\begin{align*} \left (y^{4}-a^{2} x^{2}\right ) {y^{\prime }}^{2}+2 a^{2} x y y^{\prime }+y^{2} \left (y^{2}-a^{2}\right )&=0 \end{align*}
✓ Maple. Time used: 1.697 (sec). Leaf size: 207
ode:=(y(x)^4-a^2*x^2)*diff(y(x),x)^2+2*a^2*x*y(x)*diff(y(x),x)+y(x)^2*(y(x)^2-a^2) = 0;
dsolve(ode,y(x), singsol=all);
\begin{align*}
y &= 0 \\
y-\operatorname {RootOf}\left (c_{1} \sqrt {\operatorname {RootOf}\left (\left (-y^{4}+a^{2} x^{2}\right ) \textit {\_Z}^{2}+a^{2}-y^{2}-2 a^{2} x \textit {\_Z} \right ) \textit {\_Z}}+a \operatorname {hypergeom}\left (\left [-\frac {1}{4}, \frac {1}{4}\right ], \left [\frac {3}{4}\right ], \frac {\textit {\_Z}^{2} \left (2 a^{2} x \operatorname {RootOf}\left (\left (-y^{4}+a^{2} x^{2}\right ) \textit {\_Z}^{2}+a^{2}-y^{2}-2 a^{2} x \textit {\_Z} \right )+\textit {\_Z}^{2}-a^{2}\right )}{\textit {\_Z}^{4}-a^{2} x^{2}}\right )+\textit {\_Z} \left (-\frac {a^{2} \left (2 \operatorname {RootOf}\left (\left (-y^{4}+a^{2} x^{2}\right ) \textit {\_Z}^{2}+a^{2}-y^{2}-2 a^{2} x \textit {\_Z} \right ) \textit {\_Z}^{2} x -\textit {\_Z}^{2}+x^{2}\right )}{\textit {\_Z}^{4}-a^{2} x^{2}}\right )^{{1}/{4}}\right ) &= 0 \\
\end{align*}
✓ Mathematica. Time used: 104.786 (sec). Leaf size: 395
ode=y[x]^2*(-a^2 + y[x]^2) + 2*a^2*x*y[x]*D[y[x],x] + (-(a^2*x^2) + y[x]^4)*D[y[x],x]^2==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*}
\text {Solve}\left [\left \{x&=\frac {a^2 K[1] y(K[1])-\sqrt {a^2 K[1]^2 \left (K[1]^2+1\right ) y(K[1])^4}}{a^2 K[1]^2},y(x)=\frac {-4 a \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{4},\frac {3}{4},-K[1]^2\right )-a c_1 \sqrt {K[1]}}{4 \sqrt [4]{K[1]^2+1}}\right \},\{y(x),K[1]\}\right ] \\
\text {Solve}\left [\left \{x&=\frac {a^2 K[1] y(K[1])-\sqrt {a^2 K[1]^2 \left (K[1]^2+1\right ) y(K[1])^4}}{a^2 K[1]^2},y(x)=\frac {4 a \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{4},\frac {3}{4},-K[1]^2\right )-a c_1 \sqrt {K[1]}}{4 \sqrt [4]{K[1]^2+1}}\right \},\{y(x),K[1]\}\right ] \\
\text {Solve}\left [\left \{x&=\frac {a^2 K[1] y(K[1])+\sqrt {a^2 K[1]^2 \left (K[1]^2+1\right ) y(K[1])^4}}{a^2 K[1]^2},y(x)=\frac {-4 a \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{4},\frac {3}{4},-K[1]^2\right )+a c_1 \sqrt {K[1]}}{4 \sqrt [4]{K[1]^2+1}}\right \},\{y(x),K[1]\}\right ] \\
\text {Solve}\left [\left \{x&=\frac {a^2 K[1] y(K[1])+\sqrt {a^2 K[1]^2 \left (K[1]^2+1\right ) y(K[1])^4}}{a^2 K[1]^2},y(x)=\frac {4 a \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{4},\frac {3}{4},-K[1]^2\right )+a c_1 \sqrt {K[1]}}{4 \sqrt [4]{K[1]^2+1}}\right \},\{y(x),K[1]\}\right ] \\
\end{align*}
✗ Sympy
from sympy import *
x = symbols("x")
a = symbols("a")
y = Function("y")
ode = Eq(2*a**2*x*y(x)*Derivative(y(x), x) + (-a**2 + y(x)**2)*y(x)**2 + (-a**2*x**2 + y(x)**4)*Derivative(y(x), x)**2,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
Timed Out