60.2.308 problem 885

Internal problem ID [10895]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 885
Date solved : Monday, January 27, 2025 at 10:21:48 PM
CAS classification : [_rational]

\begin{align*} y^{\prime }&=-\frac {i \left (32 i x +64+64 y^{4}+32 x^{2} y^{2}+4 x^{4}+64 y^{6}+48 x^{2} y^{4}+12 x^{4} y^{2}+x^{6}\right )}{128 y} \end{align*}

Solution by Maple

dsolve(diff(y(x),x) = -1/128*I*(32*I*x+64+64*y(x)^4+32*x^2*y(x)^2+4*x^4+64*y(x)^6+48*x^2*y(x)^4+12*x^4*y(x)^2+x^6)/y(x),y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[D[y[x],x] == ((-1/128*I)*(64 + (32*I)*x + 4*x^4 + x^6 + 32*x^2*y[x]^2 + 12*x^4*y[x]^2 + 64*y[x]^4 + 48*x^2*y[x]^4 + 64*y[x]^6))/y[x],y[x],x,IncludeSingularSolutions -> True]
 

Not solved