60.2.339 problem 916

Internal problem ID [10926]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 916
Date solved : Tuesday, January 28, 2025 at 05:31:09 PM
CAS classification : [NONE]

\begin{align*} y^{\prime }&=\frac {y \left (\ln \left (y\right ) x +\ln \left (y\right )-x -1+x \ln \left (x \right )+\ln \left (x \right )+x^{4} \ln \left (x \right )^{2}+2 x^{4} \ln \left (y\right ) \ln \left (x \right )+x^{4} \ln \left (y\right )^{2}\right )}{x \left (1+x \right )} \end{align*}

Solution by Maple

Time used: 0.011 (sec). Leaf size: 73

dsolve(diff(y(x),x) = y(x)*(ln(y(x))*x+ln(y(x))-x-1+x*ln(x)+ln(x)+x^4*ln(x)^2+2*x^4*ln(y(x))*ln(x)+x^4*ln(y(x))^2)/x/(x+1),y(x), singsol=all)
 
\[ y = {\mathrm e}^{\frac {-12 \ln \left (x \right ) \ln \left (x +1\right )+\left (-3 x^{4}+4 x^{3}-6 x^{2}+12 c_{1} +12 x \right ) \ln \left (x \right )-12 x}{3 x^{4}-4 x^{3}+6 x^{2}+12 \ln \left (x +1\right )-12 c_{1} -12 x}} \]

Solution by Mathematica

Time used: 0.649 (sec). Leaf size: 50

DSolve[D[y[x],x] == ((-1 - x + Log[x] + x*Log[x] + x^4*Log[x]^2 + Log[y[x]] + x*Log[y[x]] + 2*x^4*Log[x]*Log[y[x]] + x^4*Log[y[x]]^2)*y[x])/(x*(1 + x)),y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {\exp \left (\frac {12 x}{-3 x^4+4 x^3-6 x^2+12 x-12 \log (x+1)+c_1}\right )}{x} \\ y(x)\to \frac {1}{x} \\ \end{align*}