60.2.377 problem 954

Internal problem ID [10964]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 954
Date solved : Monday, January 27, 2025 at 10:33:11 PM
CAS classification : [_rational, _Abel]

\begin{align*} y^{\prime }&=\frac {150 x^{3}+125 \sqrt {x}+125+125 y^{2}-100 x^{3} y-500 y \sqrt {x}+20 x^{6}+200 x^{{7}/{2}}+500 x +125 y^{3}-150 x^{3} y^{2}-750 y^{2} \sqrt {x}+60 y x^{6}+600 y x^{{7}/{2}}+1500 y x -8 x^{9}-120 x^{{13}/{2}}-600 x^{4}-1000 x^{{3}/{2}}}{125 x} \end{align*}

Solution by Maple

Time used: 0.005 (sec). Leaf size: 53

dsolve(diff(y(x),x) = 1/125*(150*x^3+125*x^(1/2)+125+125*y(x)^2-100*x^3*y(x)-500*y(x)*x^(1/2)+20*x^6+200*x^(7/2)+500*x+125*y(x)^3-150*x^3*y(x)^2-750*y(x)^2*x^(1/2)+60*y(x)*x^6+600*y(x)*x^(7/2)+1500*x*y(x)-8*x^9-120*x^(13/2)-600*x^4-1000*x^(3/2))/x,y(x), singsol=all)
 
\[ y = \frac {18 x^{{7}/{2}}+145 \operatorname {RootOf}\left (-81 \left (\int _{}^{\textit {\_Z}}\frac {1}{841 \textit {\_a}^{3}-27 \textit {\_a} +27}d \textit {\_a} \right )+\ln \left (x \right )+3 c_{1} \right ) \sqrt {x}-15 \sqrt {x}+90 x}{45 \sqrt {x}} \]

Solution by Mathematica

Time used: 0.311 (sec). Leaf size: 93

DSolve[D[y[x],x] == (1 + Sqrt[x] + 4*x - 8*x^(3/2) + (6*x^3)/5 + (8*x^(7/2))/5 - (24*x^4)/5 + (4*x^6)/25 - (24*x^(13/2))/25 - (8*x^9)/125 - 4*Sqrt[x]*y[x] + 12*x*y[x] - (4*x^3*y[x])/5 + (24*x^(7/2)*y[x])/5 + (12*x^6*y[x])/25 + y[x]^2 - 6*Sqrt[x]*y[x]^2 - (6*x^3*y[x]^2)/5 + y[x]^3)/x,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\int _1^{\frac {\frac {-6 x^3-30 \sqrt {x}+5}{5 x}+\frac {3 y(x)}{x}}{\sqrt [3]{29} \sqrt [3]{\frac {1}{x^3}}}}\frac {1}{K[1]^3-\frac {3 K[1]}{29^{2/3}}+1}dK[1]=\frac {1}{9} 29^{2/3} \left (\frac {1}{x^3}\right )^{2/3} x^2 \log (x)+c_1,y(x)\right ] \]