Internal
problem
ID
[10964]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
954
Date
solved
:
Monday, January 27, 2025 at 10:33:11 PM
CAS
classification
:
[_rational, _Abel]
✓ Solution by Maple
Time used: 0.005 (sec). Leaf size: 53
dsolve(diff(y(x),x) = 1/125*(150*x^3+125*x^(1/2)+125+125*y(x)^2-100*x^3*y(x)-500*y(x)*x^(1/2)+20*x^6+200*x^(7/2)+500*x+125*y(x)^3-150*x^3*y(x)^2-750*y(x)^2*x^(1/2)+60*y(x)*x^6+600*y(x)*x^(7/2)+1500*x*y(x)-8*x^9-120*x^(13/2)-600*x^4-1000*x^(3/2))/x,y(x), singsol=all)
✓ Solution by Mathematica
Time used: 0.311 (sec). Leaf size: 93
DSolve[D[y[x],x] == (1 + Sqrt[x] + 4*x - 8*x^(3/2) + (6*x^3)/5 + (8*x^(7/2))/5 - (24*x^4)/5 + (4*x^6)/25 - (24*x^(13/2))/25 - (8*x^9)/125 - 4*Sqrt[x]*y[x] + 12*x*y[x] - (4*x^3*y[x])/5 + (24*x^(7/2)*y[x])/5 + (12*x^6*y[x])/25 + y[x]^2 - 6*Sqrt[x]*y[x]^2 - (6*x^3*y[x]^2)/5 + y[x]^3)/x,y[x],x,IncludeSingularSolutions -> True]