Internal
problem
ID
[10973]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
963
Date
solved
:
Monday, January 27, 2025 at 10:35:58 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Abel]
✓ Solution by Maple
Time used: 0.010 (sec). Leaf size: 39
dsolve(diff(y(x),x) = 1/4*(-4*cos(x)*x+4*sin(x)*x^2+4*x+4+4*y(x)^2+8*y(x)*cos(x)*x-8*x*y(x)+2*x^2*cos(2*x)+6*x^2-8*x^2*cos(x)+4*y(x)^3+12*y(x)^2*cos(x)*x-12*x*y(x)^2+6*y(x)*x^2*cos(2*x)+18*x^2*y(x)-24*y(x)*cos(x)*x^2+x^3*cos(3*x)+15*x^3*cos(x)-6*x^3*cos(2*x)-10*x^3)/x,y(x), singsol=all)
✓ Solution by Mathematica
Time used: 0.387 (sec). Leaf size: 86
DSolve[D[y[x],x] == (1 + x + (3*x^2)/2 - (5*x^3)/2 - x*Cos[x] - 2*x^2*Cos[x] + (15*x^3*Cos[x])/4 + (x^2*Cos[2*x])/2 - (3*x^3*Cos[2*x])/2 + (x^3*Cos[3*x])/4 + x^2*Sin[x] - 2*x*y[x] + (9*x^2*y[x])/2 + 2*x*Cos[x]*y[x] - 6*x^2*Cos[x]*y[x] + (3*x^2*Cos[2*x]*y[x])/2 + y[x]^2 - 3*x*y[x]^2 + 3*x*Cos[x]*y[x]^2 + y[x]^3)/x,y[x],x,IncludeSingularSolutions -> True]