60.2.407 problem 984

Internal problem ID [10994]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 984
Date solved : Tuesday, January 28, 2025 at 05:40:23 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(y)]`], _Abel]

\begin{align*} y^{\prime }&=\frac {y \left (x^{2} y^{2}+y x \,{\mathrm e}^{x}+{\mathrm e}^{2 x}\right ) {\mathrm e}^{-2 x} \left (x -1\right )}{x} \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 44

dsolve(diff(y(x),x) = y(x)/x*(x^2*y(x)^2+y(x)*x*exp(x)+exp(x)^2)/exp(x)^2*(x-1),y(x), singsol=all)
 
\[ y = \frac {{\mathrm e}^{\operatorname {RootOf}\left ({\mathrm e}^{\textit {\_Z}} \ln \left (2\right )-{\mathrm e}^{\textit {\_Z}} \ln \left (\left ({\mathrm e}^{\textit {\_Z}}+9\right ) x \right )+3 c_{1} {\mathrm e}^{\textit {\_Z}}+\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+x \,{\mathrm e}^{\textit {\_Z}}+9\right )+x}}{9 x} \]

Solution by Mathematica

Time used: 0.694 (sec). Leaf size: 112

DSolve[D[y[x],x] == ((-1 + x)*y[x]*(E^(2*x) + E^x*x*y[x] + x^2*y[x]^2))/(E^(2*x)*x),y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\int _1^{\frac {e^{-x} (x-1)+3 e^{-2 x} x y(x) (x-1)}{\sqrt [3]{2} \sqrt [3]{e^{-3 x} (x-1)^3}}}\frac {1}{K[1]^3-\frac {3 K[1]}{2^{2/3}}+1}dK[1]=\frac {2^{2/3} e^{-x} (x-1) (x-\log (x))}{9 \sqrt [3]{e^{-3 x} (x-1)^3}}+c_1,y(x)\right ] \]