60.2.45 problem 621

Internal problem ID [10619]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 621
Date solved : Wednesday, March 05, 2025 at 12:10:35 PM
CAS classification : [[_homogeneous, `class G`], [_Abel, `2nd type`, `class C`]]

\begin{align*} y^{\prime }&=\frac {1}{y+\sqrt {x}} \end{align*}

Maple. Time used: 4.937 (sec). Leaf size: 59
ode:=diff(y(x),x) = 1/(y(x)+x^(1/2)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\operatorname {RootOf}\left (\textit {\_Z}^{18} c_{1} -9 x \,\textit {\_Z}^{6}-6 \textit {\_Z}^{3} \sqrt {x}-1\right )^{3} \sqrt {x}+1}{\operatorname {RootOf}\left (\textit {\_Z}^{18} c_{1} -9 x \,\textit {\_Z}^{6}-6 \textit {\_Z}^{3} \sqrt {x}-1\right )^{3}} \]
Mathematica. Time used: 60.046 (sec). Leaf size: 445
ode=D[y[x],x] == (Sqrt[x] + y[x])^(-1); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {x}+\frac {1}{\text {Root}\left [\text {$\#$1}^6 \left (16 x^3+16 e^{12 c_1}\right )-24 \text {$\#$1}^4 x^2+8 \text {$\#$1}^3 x^{3/2}+9 \text {$\#$1}^2 x-6 \text {$\#$1} \sqrt {x}+1\&,1\right ]} \\ y(x)\to -\sqrt {x}+\frac {1}{\text {Root}\left [\text {$\#$1}^6 \left (16 x^3+16 e^{12 c_1}\right )-24 \text {$\#$1}^4 x^2+8 \text {$\#$1}^3 x^{3/2}+9 \text {$\#$1}^2 x-6 \text {$\#$1} \sqrt {x}+1\&,2\right ]} \\ y(x)\to -\sqrt {x}+\frac {1}{\text {Root}\left [\text {$\#$1}^6 \left (16 x^3+16 e^{12 c_1}\right )-24 \text {$\#$1}^4 x^2+8 \text {$\#$1}^3 x^{3/2}+9 \text {$\#$1}^2 x-6 \text {$\#$1} \sqrt {x}+1\&,3\right ]} \\ y(x)\to -\sqrt {x}+\frac {1}{\text {Root}\left [\text {$\#$1}^6 \left (16 x^3+16 e^{12 c_1}\right )-24 \text {$\#$1}^4 x^2+8 \text {$\#$1}^3 x^{3/2}+9 \text {$\#$1}^2 x-6 \text {$\#$1} \sqrt {x}+1\&,4\right ]} \\ y(x)\to -\sqrt {x}+\frac {1}{\text {Root}\left [\text {$\#$1}^6 \left (16 x^3+16 e^{12 c_1}\right )-24 \text {$\#$1}^4 x^2+8 \text {$\#$1}^3 x^{3/2}+9 \text {$\#$1}^2 x-6 \text {$\#$1} \sqrt {x}+1\&,5\right ]} \\ y(x)\to -\sqrt {x}+\frac {1}{\text {Root}\left [\text {$\#$1}^6 \left (16 x^3+16 e^{12 c_1}\right )-24 \text {$\#$1}^4 x^2+8 \text {$\#$1}^3 x^{3/2}+9 \text {$\#$1}^2 x-6 \text {$\#$1} \sqrt {x}+1\&,6\right ]} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - 1/(sqrt(x) + y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - 1/(sqrt(x) + y(x)) cannot be solved by the lie group method