60.2.102 problem 678

Internal problem ID [10676]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 678
Date solved : Friday, March 14, 2025 at 02:20:48 AM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)]`]]

\begin{align*} y^{\prime }&=\frac {x^{2} \left (x +1+2 x \sqrt {x^{3}-6 y}\right )}{2 x +2} \end{align*}

Maple. Time used: 0.277 (sec). Leaf size: 37
ode:=diff(y(x),x) = 1/2*x^2*(x+1+2*x*(x^3-6*y(x))^(1/2))/(1+x); 
dsolve(ode,y(x), singsol=all);
 
\[ c_{1} -x^{3}+\frac {3 x^{2}}{2}-3 x +3 \ln \left (x +1\right )-\frac {1}{2}-\sqrt {x^{3}-6 y} = 0 \]
Mathematica. Time used: 4.257 (sec). Leaf size: 49
ode=D[y[x],x] == (x^2*(1 + x + 2*x*Sqrt[x^3 - 6*y[x]]))/(2*(1 + x)); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{6} \left (x^3-9 \left (\int \frac {x^3}{x+1} \, dx\right )^2+18 c_1 \int \frac {x^3}{x+1} \, dx-9 c_1{}^2\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*(2*x*sqrt(x**3 - 6*y(x)) + x + 1)/(2*x + 2) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out