Internal
problem
ID
[10695]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
697
Date
solved
:
Wednesday, March 05, 2025 at 12:20:41 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Abel]
ode:=diff(y(x),x) = (1+y(x)^2*exp(-4/3*x)+y(x)^3*exp(-2*x))*exp(2/3*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == E^((2*x)/3)*(1 + y[x]^2/E^((4*x)/3) + y[x]^3/E^(2*x)); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-y(x)**3*exp(-2*x) - y(x)**2*exp(-4*x/3) - 1)*exp(2*x/3) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -y(x)**3*exp(-4*x/3) - y(x)**2*exp(2*x/3)/exp(x)**(4/3) - exp(2*x/3) + Derivative(y(x), x) cannot be solved by the factorable group method