Internal
problem
ID
[11082]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1073
Date
solved
:
Monday, January 27, 2025 at 10:44:33 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
✗ Solution by Maple
dsolve(diff(diff(y(x),x),x)+(11*WeierstrassP(x,a,b)*WeierstrassPPrime(x,a,b)-6*WeierstrassP(x,a,b)^2+1/2*a)*diff(y(x),x)/(WeierstrassPPrime(x,a,b)+WeierstrassP(x,a,b)^2)+(WeierstrassPPrime(x,a,b)^2-WeierstrassP(x,a,b)^2*WeierstrassPPrime(x,a,b)-WeierstrassP(x,a,b)*(6*WeierstrassP(x,a,b)^2-1/2*a))*y(x)/(WeierstrassPPrime(x,a,b)+WeierstrassP(x,a,b)^2)=0,y(x), singsol=all)
✗ Solution by Mathematica
Time used: 0.000 (sec). Leaf size: 0
DSolve[((-(WeierstrassP[x, {a, b}]*(-1/2*a + 6*WeierstrassP[x, {a, b}]^2)) - WeierstrassP[x, {a, b}]^2*WeierstrassPPrime[x, {a, b}] + WeierstrassPPrime[x, {a, b}]^2)*y[x])/(WeierstrassP[x, {a, b}]^2 + WeierstrassPPrime[x, {a, b}]) + ((a/2 - 6*WeierstrassP[x, {a, b}]^2 + WeierstrassP[x, {a, b}]^3 - WeierstrassP[x, {a, b}]*WeierstrassPPrime[x, {a, b}])*D[y[x],x])/(-WeierstrassP[x, {a, b}]^2 + WeierstrassPPrime[x, {a, b}]) + D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
Not solved