Internal
problem
ID
[11091]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1085
Date
solved
:
Tuesday, January 28, 2025 at 05:41:01 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
✓ Solution by Maple
Time used: 0.123 (sec). Leaf size: 24
dsolve(diff(diff(y(x),x),x)-(diff(diff(g(x),x),x)/diff(g(x),x)+(2*v-1)*diff(g(x),x)/g(x)+2*diff(h(x),x)/h(x))*diff(y(x),x)+(diff(h(x),x)/h(x)*(diff(diff(g(x),x),x)/diff(g(x),x)+(2*v-1)*diff(g(x),x)/g(x)+2*diff(h(x),x)/h(x))-diff(diff(h(x),x),x)/h(x)+diff(g(x),x)^2)*y(x)=0,y(x), singsol=all)
✓ Solution by Mathematica
Time used: 0.136 (sec). Leaf size: 27
DSolve[-(D[y[x],x]*(((-1 + 2*v)*Derivative[1][g][x])/g[x] + (2*Derivative[1][h][x])/h[x] + Derivative[2][g][x]/Derivative[1][g][x])) + y[x]*(Derivative[1][g][x]^2 + (Derivative[1][h][x]*(((-1 + 2*v)*Derivative[1][g][x])/g[x] + (2*Derivative[1][h][x])/h[x] + Derivative[2][g][x]/Derivative[1][g][x]))/h[x] - Derivative[2][h][x]/h[x]) + D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]