60.3.81 problem 1085

Internal problem ID [11091]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1085
Date solved : Tuesday, January 28, 2025 at 05:41:01 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-\left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right ) y^{\prime }+\left (\frac {h^{\prime }\left (x \right ) \left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right )}{h \left (x \right )}-\frac {h^{\prime \prime }\left (x \right )}{h \left (x \right )}+{g^{\prime }\left (x \right )}^{2}\right ) y&=0 \end{align*}

Solution by Maple

Time used: 0.123 (sec). Leaf size: 24

dsolve(diff(diff(y(x),x),x)-(diff(diff(g(x),x),x)/diff(g(x),x)+(2*v-1)*diff(g(x),x)/g(x)+2*diff(h(x),x)/h(x))*diff(y(x),x)+(diff(h(x),x)/h(x)*(diff(diff(g(x),x),x)/diff(g(x),x)+(2*v-1)*diff(g(x),x)/g(x)+2*diff(h(x),x)/h(x))-diff(diff(h(x),x),x)/h(x)+diff(g(x),x)^2)*y(x)=0,y(x), singsol=all)
 
\[ y = g \left (x \right )^{v} h \left (x \right ) \left (\operatorname {BesselJ}\left (v , g \left (x \right )\right ) c_{1} +\operatorname {BesselY}\left (v , g \left (x \right )\right ) c_{2} \right ) \]

Solution by Mathematica

Time used: 0.136 (sec). Leaf size: 27

DSolve[-(D[y[x],x]*(((-1 + 2*v)*Derivative[1][g][x])/g[x] + (2*Derivative[1][h][x])/h[x] + Derivative[2][g][x]/Derivative[1][g][x])) + y[x]*(Derivative[1][g][x]^2 + (Derivative[1][h][x]*(((-1 + 2*v)*Derivative[1][g][x])/g[x] + (2*Derivative[1][h][x])/h[x] + Derivative[2][g][x]/Derivative[1][g][x]))/h[x] - Derivative[2][h][x]/h[x]) + D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to h(x) g(x)^v (c_1 \operatorname {BesselJ}(v,g(x))+c_2 \operatorname {BesselY}(v,g(x))) \]