60.3.84 problem 1088

Internal problem ID [11094]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1088
Date solved : Tuesday, January 28, 2025 at 05:41:04 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime } \tan \left (x \right )-\left (5 \tan \left (x \right )^{2}+2\right ) y&=0 \end{align*}

Solution by Maple

Time used: 0.313 (sec). Leaf size: 29

dsolve(4*diff(diff(y(x),x),x)+4*diff(y(x),x)*tan(x)-(5*tan(x)^2+2)*y(x)=0,y(x), singsol=all)
 
\[ y = \frac {i \sin \left (x \right ) \cos \left (x \right ) c_{2} -\ln \left (i \cos \left (x \right )+\sin \left (x \right )\right ) c_{2} +c_{1}}{\sqrt {\cos \left (x \right )}} \]

Solution by Mathematica

Time used: 0.166 (sec). Leaf size: 97

DSolve[(-2 - 5*Tan[x]^2)*y[x] + 4*Tan[x]*D[y[x],x] + 4*D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {3 (-1)^{7/8} c_2 \text {arcsinh}\left (\frac {(1+i) \sqrt [4]{-\cos ^4(x)}}{\sqrt {2}}\right )+3 \sqrt [8]{-1} c_2 \sqrt [4]{-\cos ^4(x)} \sqrt {1+i \sqrt {-\cos ^4(x)}}-2 (-1)^{7/8} c_1}{2 \sqrt [8]{-\cos ^4(x)}} \]