Internal
problem
ID
[10723]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
725
Date
solved
:
Wednesday, March 05, 2025 at 12:28:42 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]
ode:=diff(y(x),x) = (-ln(x)+2*ln(2*x)*x*y(x)+ln(2*x)+ln(2*x)*y(x)^2+ln(2*x)*x^2)/ln(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (-Log[x] + Log[2*x] + x^2*Log[2*x] + 2*x*Log[2*x]*y[x] + Log[2*x]*y[x]^2)/Log[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-x**2*log(2*x) - 2*x*y(x)*log(2*x) - y(x)**2*log(2*x) + log(x) - log(2*x))/log(x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -(x**2*log(2) + x*y(x)*log(4) + (x**2 + 2*x*y(x) + y(x)**2)*log(x) + y(x)**2*log(2) + log(2))/log(x) + Derivative(y(x), x) cannot be solved by the factorable group method