60.3.114 problem 1118

Internal problem ID [11124]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1118
Date solved : Tuesday, January 28, 2025 at 05:41:20 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }+\left (\left (a +b \right ) x +m +n \right ) y^{\prime }+\left (a b x +a n +b m \right ) y&=0 \end{align*}

Solution by Maple

Time used: 0.094 (sec). Leaf size: 39

dsolve(x*diff(diff(y(x),x),x)+((a+b)*x+m+n)*diff(y(x),x)+(a*b*x+a*n+b*m)*y(x)=0,y(x), singsol=all)
 
\[ y = {\mathrm e}^{-a x} \left (\operatorname {KummerU}\left (m , m +n , x \left (a -b \right )\right ) c_{2} +\operatorname {KummerM}\left (m , m +n , x \left (a -b \right )\right ) c_{1} \right ) \]

Solution by Mathematica

Time used: 0.077 (sec). Leaf size: 46

DSolve[(b*m + a*n + a*b*x)*y[x] + (m + n + (a + b)*x)*D[y[x],x] + x*D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{-a x} (c_1 \operatorname {HypergeometricU}(m,m+n,(a-b) x)+c_2 L_{-m}^{m+n-1}((a-b) x)) \]