60.3.123 problem 1127

Internal problem ID [11133]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1127
Date solved : Monday, January 27, 2025 at 10:46:36 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }+\left (2 a x \ln \left (x \right )+1\right ) y^{\prime }+\left (a^{2} x \ln \left (x \right )^{2}+a \ln \left (x \right )+a \right ) y&=0 \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 21

dsolve(x*diff(diff(y(x),x),x)+(2*a*x*ln(x)+1)*diff(y(x),x)+(a^2*x*ln(x)^2+a*ln(x)+a)*y(x)=0,y(x), singsol=all)
 
\[ y = x^{-a x} {\mathrm e}^{a x} \left (c_{2} \ln \left (x \right )+c_{1} \right ) \]

Solution by Mathematica

Time used: 0.058 (sec). Leaf size: 25

DSolve[(a + a*Log[x] + a^2*x*Log[x]^2)*y[x] + (1 + 2*a*x*Log[x])*D[y[x],x] + x*D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{a x} x^{-a x} (c_2 \log (x)+c_1) \]