60.3.150 problem 1154

Internal problem ID [11160]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1154
Date solved : Tuesday, January 28, 2025 at 05:41:41 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y&=0 \end{align*}

Solution by Maple

Time used: 0.145 (sec). Leaf size: 53

dsolve(x^2*diff(diff(y(x),x),x)+(a*x^2+b*x+c)*y(x)=0,y(x), singsol=all)
 
\[ y = c_{1} \operatorname {WhittakerM}\left (-\frac {i b}{2 \sqrt {a}}, \frac {\sqrt {1-4 c}}{2}, 2 i \sqrt {a}\, x \right )+c_{2} \operatorname {WhittakerW}\left (-\frac {i b}{2 \sqrt {a}}, \frac {\sqrt {1-4 c}}{2}, 2 i \sqrt {a}\, x \right ) \]

Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 88

DSolve[(c + b*x + a*x^2)*y[x] + x^2*D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_1 M_{-\frac {i b}{2 \sqrt {a}},-\frac {1}{2} i \sqrt {4 c-1}}\left (2 i \sqrt {a} x\right )+c_2 W_{-\frac {i b}{2 \sqrt {a}},-\frac {1}{2} i \sqrt {4 c-1}}\left (2 i \sqrt {a} x\right ) \]