60.3.160 problem 1164

Internal problem ID [11170]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1164
Date solved : Monday, January 27, 2025 at 10:47:39 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+\left (l \,x^{2}-v^{2}\right ) y&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 23

dsolve(x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+(l*x^2-v^2)*y(x)=0,y(x), singsol=all)
 
\[ y = c_{1} \operatorname {BesselJ}\left (v , \sqrt {l}\, x \right )+c_{2} \operatorname {BesselY}\left (v , \sqrt {l}\, x \right ) \]

Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 30

DSolve[(-v^2 + l*x^2)*y[x] + x*D[y[x],x] + x^2*D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_1 \operatorname {BesselJ}\left (v,\sqrt {l} x\right )+c_2 \operatorname {BesselY}\left (v,\sqrt {l} x\right ) \]