60.3.165 problem 1169

Internal problem ID [11175]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1169
Date solved : Monday, January 27, 2025 at 10:47:47 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (a x -b^{2}\right ) y&=0 \end{align*}

Solution by Maple

Time used: 0.083 (sec). Leaf size: 49

dsolve(x^2*diff(diff(y(x),x),x)+2*x*diff(y(x),x)+(a*x-b^2)*y(x)=0,y(x), singsol=all)
 
\[ y = \frac {c_{1} \operatorname {BesselJ}\left (\sqrt {4 b^{2}+1}, 2 \sqrt {a}\, \sqrt {x}\right )+c_{2} \operatorname {BesselY}\left (\sqrt {4 b^{2}+1}, 2 \sqrt {a}\, \sqrt {x}\right )}{\sqrt {x}} \]

Solution by Mathematica

Time used: 0.104 (sec). Leaf size: 103

DSolve[(-b^2 + a*x)*y[x] + 2*x*D[y[x],x] + x^2*D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {c_1 \operatorname {Gamma}\left (1-\sqrt {4 b^2+1}\right ) \operatorname {BesselJ}\left (-\sqrt {4 b^2+1},2 \sqrt {a} \sqrt {x}\right )+c_2 \operatorname {Gamma}\left (\sqrt {4 b^2+1}+1\right ) \operatorname {BesselJ}\left (\sqrt {4 b^2+1},2 \sqrt {a} \sqrt {x}\right )}{\sqrt {a} \sqrt {x}} \]