60.3.211 problem 1215

Internal problem ID [11221]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1215
Date solved : Tuesday, January 28, 2025 at 05:42:00 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x +\left (\operatorname {a1} \,x^{2 n}+\operatorname {b1} \,x^{n}+\operatorname {c1} \right ) y&=0 \end{align*}

Solution by Maple

Time used: 0.387 (sec). Leaf size: 148

dsolve(x^2*diff(diff(y(x),x),x)+(a*x^n+b)*diff(y(x),x)*x+(a1*x^(2*n)+b1*x^n+c1)*y(x)=0,y(x), singsol=all)
 
\[ y = x^{-\frac {b}{2}-\frac {n}{2}+\frac {1}{2}} {\mathrm e}^{-\frac {a \,x^{n}}{2 n}} \left (c_{1} \operatorname {WhittakerM}\left (-\frac {\left (b +n -1\right ) a -2 \operatorname {b1}}{2 \sqrt {a^{2}-4 \operatorname {a1}}\, n}, \frac {\sqrt {b^{2}-2 b -4 \operatorname {c1} +1}}{2 n}, \frac {\sqrt {a^{2}-4 \operatorname {a1}}\, x^{n}}{n}\right )+c_{2} \operatorname {WhittakerW}\left (-\frac {\left (b +n -1\right ) a -2 \operatorname {b1}}{2 \sqrt {a^{2}-4 \operatorname {a1}}\, n}, \frac {\sqrt {b^{2}-2 b -4 \operatorname {c1} +1}}{2 n}, \frac {\sqrt {a^{2}-4 \operatorname {a1}}\, x^{n}}{n}\right )\right ) \]

Solution by Mathematica

Time used: 0.836 (sec). Leaf size: 412

DSolve[(c1 + b1*x^n + a1*x^(2*n))*y[x] + x*(b + a*x^n)*D[y[x],x] + x^2*D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to x^{\frac {1}{2}-\frac {n}{2}} 2^{\frac {1}{2} \left (\frac {\sqrt {n^2 \left (b^2-2 b-4 \text {c1}+1\right )}}{n^2}+1\right )} e^{-\frac {\left (\sqrt {a^2-4 \text {a1}}+a\right ) x^n}{2 n}} \left (x^n\right )^{\frac {\sqrt {n^2 \left (b^2-2 b-4 \text {c1}+1\right )}-b n+n^2}{2 n^2}} \left (c_1 \operatorname {HypergeometricU}\left (\frac {\left (n^2+\sqrt {\left (b^2-2 b-4 \text {c1}+1\right ) n^2}\right ) a^2+\sqrt {a^2-4 \text {a1}} n (b+n-1) a-2 \sqrt {a^2-4 \text {a1}} \text {b1} n-4 \text {a1} \left (n^2+\sqrt {\left (b^2-2 b-4 \text {c1}+1\right ) n^2}\right )}{2 \left (a^2-4 \text {a1}\right ) n^2},\frac {n^2+\sqrt {\left (b^2-2 b-4 \text {c1}+1\right ) n^2}}{n^2},\frac {\sqrt {a^2-4 \text {a1}} x^n}{n}\right )+c_2 L_{-\frac {\left (n^2+\sqrt {\left (b^2-2 b-4 \text {c1}+1\right ) n^2}\right ) a^2+\sqrt {a^2-4 \text {a1}} n (b+n-1) a-2 \sqrt {a^2-4 \text {a1}} \text {b1} n-4 \text {a1} \left (n^2+\sqrt {\left (b^2-2 b-4 \text {c1}+1\right ) n^2}\right )}{2 \left (a^2-4 \text {a1}\right ) n^2}}^{\frac {\sqrt {\left (b^2-2 b-4 \text {c1}+1\right ) n^2}}{n^2}}\left (\frac {\sqrt {a^2-4 \text {a1}} x^n}{n}\right )\right ) \]