Internal
problem
ID
[10860]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
864
Date
solved
:
Wednesday, March 05, 2025 at 01:12:34 PM
CAS
classification
:
[[_Abel, `2nd type`, `class C`], [_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]
ode:=diff(y(x),x) = y(x)*(exp(-1/4*x^2)^2*x*y(x)+exp(-1/4*x^2)*x+2*y(x)^2*exp(-3/4*x^2))*exp(1/4*x^2)/(2*y(x)*exp(-1/4*x^2)+2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (E^(x^2/4)*y[x]*(x/E^(x^2/4) + (x*y[x])/E^(x^2/2) + (2*y[x]^2)/E^((3*x^2)/4)))/(2 + (2*y[x])/E^(x^2/4)); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x*y(x)*exp(-x**2/2) + x*exp(-x**2/4) + 2*y(x)**2*exp(-3*x**2/4))*y(x)*exp(x**2/4)/(2*y(x)*exp(-x**2/4) + 2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out