Internal
problem
ID
[10883]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
887
Date
solved
:
Wednesday, March 05, 2025 at 01:15:11 PM
CAS
classification
:
[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, `class C`]]
ode:=diff(y(x),x) = 1/a^2/x^2*(y(x)*a^2*x+a+x*a^2+y(x)^3*a^3*x^3+3*y(x)^2*a^2*x^2+3*y(x)*a*x+1)/(y(x)*a*x+1+a*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (1 + a + a^2*x + 3*a*x*y[x] + a^2*x*y[x] + 3*a^2*x^2*y[x]^2 + a^3*x^3*y[x]^3)/(a^2*x^2*(1 + a*x + a*x*y[x])); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(Derivative(y(x), x) - (a**3*x**3*y(x)**3 + 3*a**2*x**2*y(x)**2 + a**2*x*y(x) + a**2*x + 3*a*x*y(x) + a + 1)/(a**2*x**2*(a*x*y(x) + a*x + 1)),0) ics = {} dsolve(ode,func=y(x),ics=ics)