60.3.263 problem 1268

Internal problem ID [11273]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1268
Date solved : Tuesday, January 28, 2025 at 05:57:52 PM
CAS classification : [_Jacobi]

\begin{align*} 2 x \left (x -1\right ) y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }+\left (a x +b \right ) y&=0 \end{align*}

Solution by Maple

Time used: 6.128 (sec). Leaf size: 39

dsolve(2*x*(x-1)*diff(diff(y(x),x),x)+(2*x-1)*diff(y(x),x)+(a*x+b)*y(x)=0,y(x), singsol=all)
 
\[ y = c_{1} \operatorname {MathieuC}\left (-a -2 b , \frac {a}{2}, \arccos \left (\sqrt {x}\right )\right )+c_{2} \operatorname {MathieuS}\left (-a -2 b , \frac {a}{2}, \arccos \left (\sqrt {x}\right )\right ) \]

Solution by Mathematica

Time used: 0.155 (sec). Leaf size: 50

DSolve[(b + a*x)*y[x] + (-1 + 2*x)*D[y[x],x] + 2*(-1 + x)*x*D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_1 \text {MathieuC}\left [-a-2 b,\frac {a}{2},\arccos \left (\sqrt {x}\right )\right ]+c_2 \text {MathieuS}\left [-a-2 b,\frac {a}{2},\arccos \left (\sqrt {x}\right )\right ] \]