60.3.281 problem 1286

Internal problem ID [11291]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1286
Date solved : Monday, January 27, 2025 at 11:05:18 PM
CAS classification : [[_2nd_order, _exact, _linear, _nonhomogeneous]]

\begin{align*} \left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2}&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 32

dsolve((3*x-1)^2*diff(diff(y(x),x),x)+3*(3*x-1)*diff(y(x),x)-9*y(x)-ln(3*x-1)^2=0,y(x), singsol=all)
 
\[ y = \frac {c_{1}}{3 x -1}+\left (3 x -1\right ) c_{2} -\frac {\ln \left (3 x -1\right )^{2}}{9}-\frac {2}{9} \]

Solution by Mathematica

Time used: 0.217 (sec). Leaf size: 145

DSolve[-Log[-1 + 3*x]^2 - 9*y[x] + 3*(-1 + 3*x)*D[y[x],x] + (-1 + 3*x)^2*D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {\left (-9 x^2+6 x-2\right ) \int _1^x\frac {K[1] (3 K[1]-2) \log ^2(3 K[1]-1)}{2 (1-3 K[1])^2}dK[1]-3 i (3 x-2) x \int _1^x\frac {i \left (9 K[2]^2-6 K[2]+2\right ) \log ^2(3 K[2]-1)}{6 (1-3 K[2])^2}dK[2]-9 c_1 x^2-9 i c_2 x^2+6 c_1 x+6 i c_2 x-2 c_1}{6 x-2} \]