60.3.285 problem 1290

Internal problem ID [11295]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1290
Date solved : Monday, January 27, 2025 at 11:05:31 PM
CAS classification : [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} \left (27 x^{2}+4\right ) y^{\prime \prime }+27 x y^{\prime }-3 y&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 29

dsolve((27*x^2+4)*diff(diff(y(x),x),x)+27*x*diff(y(x),x)-3*y(x)=0,y(x), singsol=all)
 
\[ y = c_{1} \sinh \left (\frac {\operatorname {arcsinh}\left (\frac {3 \sqrt {3}\, x}{2}\right )}{3}\right )+c_{2} \cosh \left (\frac {\operatorname {arcsinh}\left (\frac {3 \sqrt {3}\, x}{2}\right )}{3}\right ) \]

Solution by Mathematica

Time used: 0.065 (sec). Leaf size: 47

DSolve[-3*y[x] + 27*x*D[y[x],x] + (4 + 27*x^2)*D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_1 \cosh \left (\frac {1}{3} \text {arcsinh}\left (\frac {3 \sqrt {3} x}{2}\right )\right )+i c_2 \sinh \left (\frac {1}{3} \text {arcsinh}\left (\frac {3 \sqrt {3} x}{2}\right )\right ) \]