Internal
problem
ID
[10933]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
937
Date
solved
:
Friday, March 14, 2025 at 02:52:13 AM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, `class C`]]
ode:=diff(y(x),x) = 1/(2*x+1)*(-2*y(x)-2*ln(2*x+1)-2+2*x*y(x)^3+y(x)^3+6*y(x)^2*ln(2*x+1)*x+3*y(x)^2*ln(2*x+1)+6*y(x)*ln(2*x+1)^2*x+3*y(x)*ln(2*x+1)^2+2*ln(2*x+1)^3*x+ln(2*x+1)^3)/(y(x)+ln(2*x+1)+1); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (-2 - 2*Log[1 + 2*x] + Log[1 + 2*x]^3 + 2*x*Log[1 + 2*x]^3 - 2*y[x] + 3*Log[1 + 2*x]^2*y[x] + 6*x*Log[1 + 2*x]^2*y[x] + 3*Log[1 + 2*x]*y[x]^2 + 6*x*Log[1 + 2*x]*y[x]^2 + y[x]^3 + 2*x*y[x]^3)/((1 + 2*x)*(1 + Log[1 + 2*x] + y[x])); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (2*x*y(x)**3 + 6*x*y(x)**2*log(2*x + 1) + 6*x*y(x)*log(2*x + 1)**2 + 2*x*log(2*x + 1)**3 + y(x)**3 + 3*y(x)**2*log(2*x + 1) + 3*y(x)*log(2*x + 1)**2 - 2*y(x) + log(2*x + 1)**3 - 2*log(2*x + 1) - 2)/((2*x + 1)*(y(x) + log(2*x + 1) + 1)),0) ics = {} dsolve(ode,func=y(x),ics=ics)