60.3.308 problem 1314

Internal problem ID [11318]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1314
Date solved : Tuesday, January 28, 2025 at 05:58:17 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }-\left (2 \left (n -1\right ) x^{2}+2 n -1\right ) y^{\prime }+\left (v +n \right ) \left (-v +n -1\right ) x y&=0 \end{align*}

Solution by Maple

Time used: 0.293 (sec). Leaf size: 33

dsolve(x*(x^2+1)*diff(diff(y(x),x),x)-(2*(n-1)*x^2+2*n-1)*diff(y(x),x)+(v+n)*(-v+n-1)*x*y(x)=0,y(x), singsol=all)
 
\[ y = x^{n} \left (\operatorname {LegendreQ}\left (v , n , \sqrt {x^{2}+1}\right ) c_{2} +\operatorname {LegendreP}\left (v , n , \sqrt {x^{2}+1}\right ) c_{1} \right ) \]

Solution by Mathematica

Time used: 0.253 (sec). Leaf size: 75

DSolve[(-1 + n - v)*(n + v)*x*y[x] - (-1 + 2*n + 2*(-1 + n)*x^2)*D[y[x],x] + x*(1 + x^2)*D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_1 \operatorname {Hypergeometric2F1}\left (\frac {1}{2} (-n-v),\frac {1}{2} (-n+v+1),1-n,-x^2\right )+c_2 x^{2 n} \operatorname {Hypergeometric2F1}\left (\frac {n-v}{2},\frac {1}{2} (n+v+1),n+1,-x^2\right ) \]