Internal
problem
ID
[10938]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
942
Date
solved
:
Wednesday, March 05, 2025 at 01:24:58 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=diff(y(x),x) = -(y(x)^2+2*x*y(x)+x^2+exp(2*(x-y(x))^3*(x+y(x))^3/(-y(x)^2+x^2-1)))/(-y(x)^2-2*x*y(x)-x^2+exp(2*(x-y(x))^3*(x+y(x))^3/(-y(x)^2+x^2-1))); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (-E^((2*(x - y[x])^3*(x + y[x])^3)/(-1 + x^2 - y[x]^2)) - x^2 - 2*x*y[x] - y[x]^2)/(E^((2*(x - y[x])^3*(x + y[x])^3)/(-1 + x^2 - y[x]^2)) - x^2 - 2*x*y[x] - y[x]^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) + (x**2 + 2*x*y(x) + y(x)**2 + exp(2*(x - y(x))**3*(x + y(x))**3/(x**2 - y(x)**2 - 1)))/(-x**2 - 2*x*y(x) - y(x)**2 + exp(2*(x - y(x))**3*(x + y(x))**3/(x**2 - y(x)**2 - 1))),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out