7.19.12 problem 38

Internal problem ID [552]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 4. Laplace transform methods. Section 4.3 (Translation and partial fractions). Problems at page 296
Problem number : 38
Date solved : Wednesday, February 05, 2025 at 03:45:46 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} x^{\prime \prime }+6 x^{\prime }+18 x&=\cos \left (2 t \right ) \end{align*}

Using Laplace method With initial conditions

\begin{align*} x \left (0\right )&=1\\ x^{\prime }\left (0\right )&=-1 \end{align*}

Solution by Maple

Time used: 0.223 (sec). Leaf size: 36

dsolve([diff(x(t),t$2)+6*diff(x(t),t)+18*x(t)=cos(2*t),x(0) = 1, D(x)(0) = -1],x(t), singsol=all)
 
\[ x \left (t \right ) = \frac {7 \cos \left (2 t \right )}{170}+\frac {3 \sin \left (2 t \right )}{85}+\frac {{\mathrm e}^{-3 t} \left (489 \cos \left (3 t \right )+307 \sin \left (3 t \right )\right )}{510} \]

Solution by Mathematica

Time used: 0.203 (sec). Leaf size: 49

DSolve[{D[x[t],{t,2}]+6*D[x[t],t]+18*x[t]==Cos[2*t],{x[0]==1,Derivative[1][x][0] ==-1}},x[t],t,IncludeSingularSolutions -> True]
 
\[ x(t)\to \frac {1}{510} e^{-3 t} \left (18 e^{3 t} \sin (2 t)+307 \sin (3 t)+21 e^{3 t} \cos (2 t)+489 \cos (3 t)\right ) \]