60.3.329 problem 1335
Internal
problem
ID
[11339]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1335
Date
solved
:
Tuesday, January 28, 2025 at 06:02:28 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {\left (a x +b \right ) y}{4 x \left (x -1\right )^{2}} \end{align*}
✓ Solution by Maple
Time used: 0.120 (sec). Leaf size: 57
dsolve(diff(diff(y(x),x),x) = -1/2/x*(3*x-1)/(x-1)*diff(y(x),x)-1/4*(a*x+b)/x/(x-1)^2*y(x),y(x), singsol=all)
\[
y = c_{1} \operatorname {LegendreP}\left (\frac {\sqrt {-4 a +1}}{2}-\frac {1}{2}, \sqrt {-a -b}, \sqrt {x}\right )+c_{2} \operatorname {LegendreQ}\left (\frac {\sqrt {-4 a +1}}{2}-\frac {1}{2}, \sqrt {-a -b}, \sqrt {x}\right )
\]
✓ Solution by Mathematica
Time used: 1.685 (sec). Leaf size: 529
DSolve[D[y[x],{x,2}] == -1/4*((b + a*x)*y[x])/((-1 + x)^2*x) - ((-1 + 3*x)*D[y[x],x])/(2*(-1 + x)*x),y[x],x,IncludeSingularSolutions -> True]
\[
y(x)\to \sqrt [4]{x} (x-1)^{\frac {2 a \sqrt {-4 \sqrt {(4 a-1) (a+b)}-8 a-4 b+1}+2 b \left (\sqrt {-4 \sqrt {(4 a-1) (a+b)}-8 a-4 b+1}+2\right )-\sqrt {(4 a-1) (a+b)} \sqrt {-4 \sqrt {(4 a-1) (a+b)}-8 a-4 b+1}+1}{8 b+2}} e^{-\frac {1}{4} \int \frac {1-3 x}{x-x^2} \, dx} \left (c_1 \operatorname {Hypergeometric2F1}\left (\frac {1}{4} \left (\sqrt {-8 a-4 b-4 \sqrt {(4 a-1) (a+b)}+1}+1\right ),\frac {8 \sqrt {-8 a-4 b-4 \sqrt {(4 a-1) (a+b)}+1} a+4 b \left (\sqrt {-8 a-4 b-4 \sqrt {(4 a-1) (a+b)}+1}+1\right )-4 \sqrt {(4 a-1) (a+b)} \sqrt {-8 a-4 b-4 \sqrt {(4 a-1) (a+b)}+1}-\sqrt {-8 a-4 b-4 \sqrt {(4 a-1) (a+b)}+1}+1}{16 b+4},\frac {1}{2},x\right )+i c_2 \sqrt {x} \operatorname {Hypergeometric2F1}\left (\frac {1}{4} \left (\sqrt {-8 a-4 b-4 \sqrt {(4 a-1) (a+b)}+1}+3\right ),\frac {8 \sqrt {-8 a-4 b-4 \sqrt {(4 a-1) (a+b)}+1} a+4 b \left (\sqrt {-8 a-4 b-4 \sqrt {(4 a-1) (a+b)}+1}+3\right )-4 \sqrt {(4 a-1) (a+b)} \sqrt {-8 a-4 b-4 \sqrt {(4 a-1) (a+b)}+1}-\sqrt {-8 a-4 b-4 \sqrt {(4 a-1) (a+b)}+1}+3}{16 b+4},\frac {3}{2},x\right )\right )
\]