60.3.356 problem 1362

Internal problem ID [11366]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1362
Date solved : Tuesday, January 28, 2025 at 06:04:29 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (x^{2}-1\right ) y^{\prime \prime }-2 x^{3} y^{\prime }-\left (\left (a -n \right ) \left (a +n +1\right ) x^{2} \left (x^{2}-1\right )+2 a \,x^{2}+n \left (n +1\right ) \left (x^{2}-1\right )\right ) y&=0 \end{align*}

Solution by Maple

Time used: 1.187 (sec). Leaf size: 109

dsolve(x^2*(x^2-1)*diff(diff(y(x),x),x)-2*x^3*diff(y(x),x)-((a-n)*(a+n+1)*x^2*(x^2-1)+2*a*x^2+n*(n+1)*(x^2-1))*y(x)=0,y(x), singsol=all)
 
\[ y = c_{1} x^{-n} \operatorname {HeunC}\left (0, -n -\frac {1}{2}, -2, -\frac {1}{4} a^{2}+\frac {1}{4} n^{2}-\frac {1}{4} a +\frac {1}{4} n , -\frac {1}{4} n^{2}-\frac {1}{4} n +\frac {3}{4}+\frac {1}{4} a^{2}-\frac {1}{4} a , x^{2}\right )+c_{2} x^{n +1} \operatorname {HeunC}\left (0, n +\frac {1}{2}, -2, -\frac {1}{4} a^{2}+\frac {1}{4} n^{2}-\frac {1}{4} a +\frac {1}{4} n , -\frac {1}{4} n^{2}-\frac {1}{4} n +\frac {3}{4}+\frac {1}{4} a^{2}-\frac {1}{4} a , x^{2}\right ) \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[D[y[x],{x,2}] == -(((2*a*x^2 + n*(1 + n)*(-1 + x^2) + (a - n)*(1 + a + n)*x^2*(-1 + x^2))*y[x])/(x^2*(-1 + x^2))) + (2*x*D[y[x],x])/(-1 + x^2),y[x],x,IncludeSingularSolutions -> True]
 

Not solved