60.3.402 problem 1408

Internal problem ID [11412]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1408
Date solved : Monday, January 27, 2025 at 11:20:06 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }&=-\frac {\left (x^{2} \left (\left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right )+\left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )+\left (x^{2}-\operatorname {a3} \right ) \left (x^{2}-\operatorname {a1} \right )\right )-\left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )\right ) y^{\prime }}{x \left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )}-\frac {\left (A \,x^{2}+B \right ) y}{x \left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )} \end{align*}

Solution by Maple

dsolve(diff(diff(y(x),x),x) = -(x^2*((x^2-a1)*(x^2-a2)+(x^2-a2)*(x^2-a3)+(x^2-a3)*(x^2-a1))-(x^2-a1)*(x^2-a2)*(x^2-a3))/x/(x^2-a1)/(x^2-a2)/(x^2-a3)*diff(y(x),x)-(A*x^2+B)/x/(x^2-a1)/(x^2-a2)/(x^2-a3)*y(x),y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[D[y[x],{x,2}] == -(((B + A*x^2)*y[x])/(x*(-a1 + x^2)*(-a2 + x^2)*(-a3 + x^2))) - (((a1 - x^2)*(-a2 + x^2)*(-a3 + x^2) + x^2*((-a1 + x^2)*(-a2 + x^2) + (-a1 + x^2)*(-a3 + x^2) + (-a2 + x^2)*(-a3 + x^2)))*D[y[x],x])/(x*(-a1 + x^2)*(-a2 + x^2)*(-a3 + x^2)),y[x],x,IncludeSingularSolutions -> True]
 

Not solved