60.3.44 problem 1049

Internal problem ID [11040]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1049
Date solved : Wednesday, March 05, 2025 at 01:38:28 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y-{\mathrm e}^{x}&=0 \end{align*}

Maple. Time used: 0.039 (sec). Leaf size: 58
ode:=diff(diff(y(x),x),x)-4*x*diff(y(x),x)+(4*x^2-1)*y(x)-exp(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (\sqrt {\pi }\, \left (i \cos \left (x \right )+\sin \left (x \right )\right ) {\mathrm e}^{\frac {i}{2}} \operatorname {erf}\left (x -\frac {1}{2}-\frac {i}{2}\right )-\sqrt {\pi }\, {\mathrm e}^{-\frac {i}{2}} \left (i \cos \left (x \right )-\sin \left (x \right )\right ) \operatorname {erf}\left (x -\frac {1}{2}+\frac {i}{2}\right )+4 \sin \left (x \right ) c_{1} +4 \cos \left (x \right ) c_{2} \right ) {\mathrm e}^{x^{2}}}{4} \]
Mathematica. Time used: 0.139 (sec). Leaf size: 94
ode=-E^x + (-1 + 4*x^2)*y[x] - 4*x*D[y[x],x] + D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2} e^{x (x-i)} \left (2 \int _1^x\frac {1}{2} i e^{((1+i)-K[1]) K[1]}dK[1]-i e^{2 i x} \int _1^xe^{-((K[2]-(1-i)) K[2])}dK[2]-i c_2 e^{2 i x}+2 c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*x*Derivative(y(x), x) + (4*x**2 - 1)*y(x) - exp(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (4*x**2*y(x) - y(x) - exp(x) + Derivative(y(x), (x, 2)))/(4*x) cannot be solved by the factorable group method