60.3.430 problem 1436

Internal problem ID [11440]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1436
Date solved : Tuesday, January 28, 2025 at 06:06:18 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }&=-\frac {\left (4 v \left (v +1\right ) \sin \left (x \right )^{2}-\cos \left (x \right )^{2}+2-4 n^{2}\right ) y}{4 \sin \left (x \right )^{2}} \end{align*}

Solution by Maple

Time used: 0.957 (sec). Leaf size: 91

dsolve(diff(diff(y(x),x),x) = -1/4*(4*v*(v+1)*sin(x)^2-cos(x)^2+2-4*n^2)/sin(x)^2*y(x),y(x), singsol=all)
 
\[ y = \frac {\sqrt {\cos \left (x \right )}\, \left (\frac {\cos \left (2 x \right )}{2}-\frac {1}{2}\right )^{\frac {n}{2}+\frac {1}{2}} \left (c_{1} \operatorname {hypergeom}\left (\left [-\frac {v}{2}+\frac {n}{2}, \frac {1}{2}+\frac {v}{2}+\frac {n}{2}\right ], \left [\frac {1}{2}\right ], \frac {\cos \left (2 x \right )}{2}+\frac {1}{2}\right )+c_{2} \cos \left (x \right ) \operatorname {hypergeom}\left (\left [1+\frac {v}{2}+\frac {n}{2}, \frac {1}{2}-\frac {v}{2}+\frac {n}{2}\right ], \left [\frac {3}{2}\right ], \frac {\cos \left (2 x \right )}{2}+\frac {1}{2}\right )\right )}{\sqrt {\sin \left (2 x \right )}} \]

Solution by Mathematica

Time used: 0.618 (sec). Leaf size: 33

DSolve[D[y[x],{x,2}] == -1/4*(Csc[x]^2*(2 - 4*n^2 - Cos[x]^2 + 4*v*(1 + v)*Sin[x]^2)*y[x]),y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \sqrt [4]{-\sin ^2(x)} (c_1 P_v^n(\cos (x))+c_2 Q_v^n(\cos (x))) \]